Физико-химические свойства йода и его соединений
Рефераты >> Химия >> Физико-химические свойства йода и его соединений

Растворимость йодидов возрастает в ряду йодид ртути, йодид золота, йодид серебра, йодид одновалентной меди, йодид свинца. Остальные йодиды металлических катионов и аммония хорошо растворимы в воде.

Наибольшей реакционной способностью и физиологической активностью обладают соединения положительно одновалентного йода. Вследствие своей неустойчивости и реакционной способности они встречаются в биосфере в низких концентрациях. Как было отмечено раньше, однозарядный положительный катион йода может быть получен специальными методами в лаборатории, но в естественных условиях он крайне неустойчив. В природе соединения положительно поляризованного одновалентного йода находятся в других формах.

Окись одновалентного йода не существует. Содержащая йод в степени окисления +1 йодноватистая кислота является очень неустойчивым соединением. Ее разбавленный раствор получают при встряхивании водного раствора йода с окисью ртути. В кислой среде йодноватистая кислота является сильным окислителем, в щелочной среде при рН выше 9 гипойодит-ион взаимодействует с водой с образованием йодид-иона и йодат-иона.

Молекулярный йод, в отличие от кислорода и азота, не является неполярным веществом. Измерения дипольного момента молекулярного йода в свободном состоянии и в растворах дают величины от 0,6 до 1,5 D, что указывает на значительное разделение зарядов в молекуле. В биосфере невозможно изолированное существование молекулярного йода. Везде, в любых средах биосферы молекулы йода будут сталкиваться с поляризующими веществами, из которых наибольшее значение имеет вода.

По классическим представлениям при растворении молекулярного йода в воде устанавливается равновесие:

I2 + H2O=I + HOI.

Равновесие сильно смещено влево. Образующаяся йодноватистая кислота может взаимодействовать с водой как амфотерное соединение. Исследования В.О. Мохнача и сотрудников [Мохнач, 1968] показали, что в растворах молекулярного йода не обнаруживается йодид-ион. Ультрафиолетовые спектры поглощения системы «молекулярный йод-вода» обнаруживают максимумы поглощения в диапазонах 288 - 290 нм, 350 - 354 нм и около 460 нм. Первая полоса - поглощение трийодид-иона, вторая соответствует аниону IO- , третья - поляризованной гидратированной молекуле йода. Отсутствие поглощения в диапазоне 224 - 226 нм свидетельствует об отсутствии йодид-ионов в растворе. По мнению автора, в растворах молекулярного йода устанавливается равновесие 2I2 + Н2О =2Н+ + I3 +IO-. Анион йодноватистой кислоты является причиной сильной окислительной и физиологической активности растворов молекулярного йода.

Другим важным соединением, содержащим положительно поляризованный одновалентный йод, является однохлористый йод. Он образуется при непосредственном взаимодействии йода с хлором. Однохлористый йод представляет собой кристаллы желтого цвета, плавящиеся при 27° С и кипящие при 100 - 102 °С с частичным разложением. Более устойчивая форма однохлористого йода - рубиново-красные кристаллы.

Относительно характера химической связи в этом соединении существует несколько мнений. Неницеску [1968] указывает на преимущественно ковалентную связь, аргументируя это низкой температурой плавления и кипения вещества. Он же указывает, что жидкий однохлористый йод не проводит электрический ток. Однако Фарадей обнаружил электропроводность однохлористого йода в жидком состоянии, причем йод выделялся на катоде, а хлор - на аноде. Растворы однохлористого йода в ионизирующих растворителях обнаруживают аналогичные свойства. В парах молекула однохлористого йода имеет дипольный момент 0,65 D. В неполярных растворителях значение дипольного момента сильно возрастает: до 1,47 D в циклогексане и 1,49 D в четыреххлористом углероде, что указывает на существенно ионный характер связи. В полярных растворителях проявляется диссоциация однохлористого йода вследствие сильных электроноакцепторных свойств положительно поляризованного йода.

Исследования спектров поглощения растворов однохлористого йода в ультрафиолетовой и видимой области [Мохнач, 1974] показали, что в спиртовых и солянокислых растворах однохлористого йода йод находится в форме йодид-иона и аниона йодноватистой кислоты. В водных растворах появляется полоса поглощения, отвечающая гидратированной молекуле йода.

Однохлористый йод обладает высокой биологической активностью. Он используется в медицине и ветеринарии в качестве антибактериального и дезинфицирующего средства, а также в органическом синтезе как йодирующий агент.

Неорганические соединения положительного трехвалентного йода неустойчивы. Органические соединения подразделяются на две группы: соединения йодония, имеющие некоторое химическое сходство с соединениями аммония, и йодозосоединения, содержащие

связанный с йодом атом кислорода. В природе стабильные соединения трехвалентного йода не обнаружены, хотя нельзя исключать, что некоторые из них являются промежуточными продуктами метаболизма йода.

Одной из важнейших форм нахождения йода в объектах биосферы является йод в степени окисления +5. Известны как неорганические, так и органические производные пятивалентного йода. Неорганические соединения пятивалентного йода являются производными йодноватой кислоты НЮ3. Йодноватая кислота представляет собой бесцветное кристаллическое вещество, плавящееся при 110°С без разложения, хорошо растворимое в воде и нерастворимое в неполярных органических растворителях. Нагревание йодноватой кислоты до 195°С приводит к отщеплению воды и образованию пятиокиси йода [Неницеску, 1968]. Йодноватая кислота является сильной кислотой, в разбавленных водных растворах практически полностью диссоциирует на ионы. В кислой среде йодноватая кислота - достаточно сильный окислитель. Стандартный окислительно-восстановительный потенциал системы «йодноватая кислота / молекулярный йод» равен +1,19 В, системы «йодноватая кислота / йодид-ион» -+1,085 В. В нейтральной и тем более в щелочной среде окислительная активность йодноватой кислоты намного ниже.

В природе относительно широко распространены соли йодноватой кислоты - йодаты. Йодаты представляют собой кристаллические вещества, бесцветные, если не окрашен катион. Большинство йодатов хорошо растворяются в воде. К труднорастворимым йодатам относятся йодаты щелочноземельных металлов (кальция, стронция, бария), а также йодат церия, йодат свинца, йодат серебра. Некоторые из этих соединений встречаются в природе.

Йодаты более устойчивы, чем аналогичные броматы и хлораты, но также проявляют окислительные свойства. В щелочной среде йодаты могут быть окислены сильными окислителями (гипохлоритом натрия или молекулярным хлором) до перйодатов - соединений семивалентного йода. Известны перйодаты натрия, серебра и некоторых других катионов. Соответствующая степени окисления йода +7 кислота плавится при 130°С с разложением на пятиокись йода и молекулярный кислород. Высокая окислительная активность соединений семивалентного йода является причиной узкого распространения этой формы микроэлемента в объектах биосферы. Перйодаты могут быть устойчивы только в нейтральных и щелочных почвах сухих и жарких областей.


Страница: