Химия жизни
Рефераты >> Химия >> Химия жизни

Наконец, следует иметь в виду и то решающее значение, которое начинает играть в развитии науки производитель­ность труда ученого. Физические методы сыграли и продол­жают играть в этом отношении в химии революционизирую­щую роль. Достаточно сравнить, например, время, которое затрачивал химик-органик на установление строения синте­зированного соединения химическими средствами и которое он затрачивает теперь, владея арсеналом физических мето­дов. Несомненно, что этот резерв применения достижений физики используется далеко не достаточно.

Подведем некоторые итоги. Мы видим, что физика во все большем масштабе и все более плодотворно вторгается в хи­мию. Физика вскрывает сущность качественных химических закономерностей, снабжает химию совершенными инструмен­тами исследования. Растет относительный объем физической химии, и не видно причин, которые могут замедлить этот рост.

Взаимосвязь химии и биологии

Общеизвестно, что химия и биология долгое время шли каж­дая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма.

Резкое укрепление взаимосвязи химии с биологией про­изошло в результате создания А.М. Бутлеровым теория хими­ческого строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось.

Поступательное развитие науки XIX в., приведшее к рас­крытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами прак­тические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере хи­мических процессов в живых тканях, об обусловленности биологических функций химическими реакциями.

Если посмотреть на обмен веществ в организме с чисто хи­мической точки зрения, как это сделал А.И. Опарин, мы уви­дим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между добей во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи ре­акций. И этот порядок закономерно направлен, к постоянно­му самосохранению и самовоспроизведению всей живой систе­мы в целом в данных условиях окружающей среды.

Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реа­гировать на изменения внешней среды, связаны с определен­ными комплексами химических превращений.

Значение химии среди наук, изучающих жизнь, исклю­чительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемогло­бина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена струк­тура нуклеиновых Кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процес­сов, функций живого лежат химические механизмы. Все

функции и процессы, происходящие в живом организме, ока­зывается возможным изложить на языке химии, в виде кон­кретных химических процессов.

Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистиче­ским упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по срав­нению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, воз­никшие на стыке биологии, химии и физики: биохимия — наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия — наука о строении, функциях и путях синтеза соединений, составляющих жи­вые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиа­ционная биология.

Крупнейшими достижениями этого процесса стали опре­деление химических продуктов клеточного метаболизма (об­мена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сдела­но открытие материальных основ регулятивного и наслед­ственного молекулярного механизма, а также в значитель­ной степени выяснено значение химических процессов» энер­гетике процессов клетки и вообще живых организмов.

Ныне для химии особенно важным становится примене­ние биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее со­вершенных механизмов и процессов. На этом пути есть уже определенные достижения.

Более столетия назад ученые поняли, что основой исклю­чительной эффективности биологических процессов являет­ся биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые дале­ко превзойдут существующие в нашей промышленности.

Несмотря на то, что ферменты обладают общими свойства­ми, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рам­ках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в не­органическом мире сталкиваются с серьезными ограничени­ями. Пока речь может идти только о моделировании некото­рых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а так­же частично-практического применения выделенных фермен­тов для ускорения некоторых химических реакций.

Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермен­та, клетки и даже организма.

Теория саморазвития элементарных открытых каталитиче­ских систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах хи­мической эволюции, об отборе элементов и структур и их при­чинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.

Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой самораз­витие каталитических систем и, следовательно, эволюцио­нирующим веществом являются катализаторы. В ходе реак­ции происходит естественный отбор тех каталитических цен­тров, которые обладают наибольшей активностью. Самораз­витие, самоорганизация я самоусложнение каталитических систем происходит за счет постоянного притока трансформи­руемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развива­ющиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и ору­дием отбора наиболее прогрессивных эволюционных измене­ний катализаторов.


Страница: