Химия платины и ее соединений
Рефераты >> Химия >> Химия платины и ее соединений

Соединения Pt (IV)

Степень окисления +4 харак­терна для платины. Для Pt (IV) известны коричневые (разных оттенков) оксид PtO2, гидроксид Pt(OH)4 (правильнее PtO2*nH2O), галогениды PtHal4, сульфид PtS2 и многочисленные производные ее катионных, нейт­ральных и анионных комплексов.

Окислы Pt тер­мически неустойчивы и при нагревании диссоциируют.

PtO2 = Pt+O2

Под действием молекулярного водорода окислы Pt вос­станавливаются до металла.

Координационное число Pt (IV) равно шести, что отвеча­ет октаэдрической конфигурации комплексов. Последние диамагнит­ны, имеют следующую электронную конфигурацию: s12p° 6d

Бинарные соединения Pt (IV) получают прямым взаимодействием простых веществ при нагревании или путем разложения соответствую­щих комплексных соединений. У бинарных соединений Pt (IV) кислотные свойства преобладают над основными. При растворении гидроксида платины (IV) PtO2*nH2O в кислотах и щелочах образуются комплексы анионного типа, напри­мер:

Pt(OH)4 + 2NaOH = Na2[Pt(OH)6]

Pt(OH)4 + 2НС1 = Н2[РtС16] + 4Н2O

Для тетрагалогенидов PtHaI4 очень характерно взаимодействие с галогеноводородными кислотами и основными галогенидами с образо­ванием комплексов типа [PtHal6]2- (Hal = Cl, Br, I):

2HC1 + PtCl4 = Н2[РtСl6]

2NaCl + PtCl4 = Nа2[РtС16]

Ионы [PtHal6]2- (за исключением [PtF6]2-) очень устойчивы. Так, при действии AgNO3 на растворы гексахлороплатинатов (IV) образует­ся светло-бурый осадок Ag2[PtCl6], а не AgCl. В противоположность Na2[PtCl6] гексахлороплатинаты (IV) К+, Pb+, Сs+ и NH4+ плохо раство­ряются в воде и выделяются в виде желтых осадков, что используется для открытия указанных ионов в аналитической практике.

Из соединений платины наиболее важным для практики является платинохлористоводородная кислота — распространенный реактив, обычно используемый для приготовления других соединений платины. Твердая H2PtCl6 представляет собой красно-коричневые кристаллы. Растворы ее окрашены в желтый цвет. Хотя соли этой кислоты с мно­гозарядными катионами растворимы, ионы K+, Rb+, Cs+ и NH4+ об­разуют с анионом PtCl62- малорастворимые соединения, поэтому пла­тинохлористоводородная кислота используется как реактив на тяжелые щелочные элементы:

H2PtCl6 + 2КС1 = K2PtCl6 + 2НС1

Получают ее выпариванием растворов продуктов взаимодейст­вия PtCl4 с соляной кислотой или растворения платины в царской водке.

3Pt + 18HCl + 4HNO3 = 3H2[PtCl6] + 4NO + 8H2O

Исходя из Н2[РtС16] можно перейти практически к любому другому соединению платины. Уже приведены реакции получения из Н2[РtС16] таких веществ, как PtCl4, PtCI2, металлической платины и др. Интересный процесс протекает при кипячении раствора Н2[РtС16] со щелочью. При этом образуется гексагидроксоплатинат щелочного металла:

Н2[РtС16] + 8КОН = K2[Pt(OH)6] + 6КС1 + 2Н2O

Затем подкислением раствора K2[Pt(OH)6] минеральной кисло­той можно получить белый осадок гексагидроксоплатиновой кислоты:

[Pt(OH)e]2- + 2Н+ = H2[Pt(OH)6]

В этом соединении соседствуют протоны и ионы гидроксила, но реакции нейтрализации не происходит — настолько прочно связывает Pt(IV) лиганды — ионы ОН-, находящиеся во внутренней координа­ционной сфере. Здесь важнее всего не термодинамическая, а кинети­ческая устойчивость соединений платины.

Аммонийную соль (NH4)2PtCl6 используют для выделения плати­ны из растворов при ее переработке, поскольку дальнейший термолиз этой соли приводит к получению металлической платины (в виде мелкодисперсного черного порошка с сильно развитой поверхностью — так называемой платиновой черни):

(NH4)2PtCl6 = Pt + 2Cl2 + 2NH4Cl

Помимо [PtX6]2- (X = Cl-, Br-, I-, CN-, NCS-, ОН-) известны много­численные анионные комплексы с разнородными лигандами, напри­мер, ряда: М2[Рt(ОН)6], M2[Рt(ОН)5С1], M2[Pt(OH)4Cl2], М2[Рt(ОН)3С13], M2[Pt(OH)2Cl4], M2[Pt(OH)Cl5], М2[РtC16].Некоторые из платинат (IV)-комплексов этого ряда могут быть получены при гидролизе PtCl4:

PtCl4 + 2НОН = H2[Pt(OH)2Cl4]

или действием щелочей на хлороплатинаты (IV):

Na2[PtCl6] + 6NaOH = Na2[Pt(OH)6] + 6NaCl

О разнообразии комплексов Pt (IV) можно судить также по следующему ряду производных: [Рt(NН3)6]С14, [Pt(NH3)5Cl]Cl3, [Pt(NH3)4Cl2]Cl2, [Рt(NH3)3С13]С1, [Рt(NН3)2С14], K[Pt(NH3)Cl5], К2[РtС16].

Характер координации хлорид-иона в этих соединениях можно легко установить химическим путем. Так, при взаимодействии растворов [Рt(NН3)6]Сl4 и AgNO3 осаждаются 4 моль AgCl в расчете на 1 моль Pt. Из растворов [Рt(NН3)5С1]С13 и [Рt(NН3)4С12]С12 выделяются соответственно 3 и 2 моль AgCl, а из раствора [Рt(NН3)2С14] хлорид серебра осаждается только в результате долгого стояния раствора при нагревании. В соответствии с харак­тером ионизации меняется и электрическая проводимость растворов. Понятно, что при одинаковой молярной концентрации максимальной электрической проводимостью обладает раствор [Pt(NH3)6]Cl4, минимальной — раствор [Pt(NH3)2Cl4] (рис. 3).

Для соединений состава [Pt(NH3)4Cl2]Cl2 и [Pt(NH3)2Cl4] характерна геометрическая изомерия: цuc-[Pt(NH3)2Cl4] имеет оранжевую, а транс-[Pt(NH3)2Cl4] — желтую окраску. Расположение транс-комплексов [Pt(NH3)2Cl4] в кристалле показано на рис. 4.

Рис. 3. Молярная электрическая проводи­мость соединений Pt (IV) в зависимости от их состава

 

Р и с. 4. Строение крис­талла [Pt(NH3)2Cl4]

Соединения Pt (VI)

Все изученные окислы платины термически неустойчивы, но оче­видно, что чем выше проявляемая платиной в окислах степень окисле­ния, тем сильнее выражен кислотный характер окисла. Так, при элект­ролизе щелочных растворов с использованием Pt-электродов на ано­де получается трехокись РtO3, которая с КОН дает платинат состава К2О*ЗPtO3, что доказывает способность платины (VI) проявлять кис­лотные свойства.

Платина, подобно ряду других 5d-элементов, образует гексафторид PtF6. Это летучее кристаллическое вещество (т. пл. 61° С, т. кип. 69° С) темно-красного цвета, получают его сжиганием платины во фторе.

Pt4+ + 4F- = PtF4 , PtF4 + F2 = PtF6 .

Изучение свойств гексафторида платины — летучего вещества, образующего красно-коричневые пары, — привело к важным послед­ствиям в развитии неорганической химии. В 1960 г. Бартлетту, рабо­тавшему в Ванкувере (Канада), удалось показать, что PtF6 может от­щеплять фтор с образованием пентафторида, который затем диспропорционирует:

PtF6 = PtF5 + 0,5F2, 2PtF5 = PtF6+PtF4.


Страница: