Электрокинетические явления в дисперсных системах
Рефераты >> Химия >> Электрокинетические явления в дисперсных системах

Толщина диффузного слоя рассчитывается по формуле:

Недостаток теории Гуи заключается в том, что она не объясняет явления перезарядки-перемены знака электрокинетического потенциала при введении в систему электролита с многовалентным ионом, заряд которого противоположен по знаку заряду дисперсной фазы. Также теория Гуи не объясняет различного действия разных по природе противоионов одной и той же валентности на двойной электрический слой. Наконец, данная теория относительно хорошо выполняется для достаточно разбавленных коллоидных растворов, оказывается неприемлемой для более концентрированных.

Все эти затруднения в значительной мере преодолены в теории строения двойного электрического слоя, предложенной Штерном.

I.2.3.Теория Штерна

В 1924 г. Штерн предложил схему строения двойного электрического слоя. Разрабатывая данную теорию, Штерн исходил из двух предпосылок. Во-первых, он принял, что ионы имеют конечные, вполне определённые размеры и, следовательно, центры ионов не могут находится к поверхности твёрдой фазы ближе, чем на расстояние ионного радиуса. Во-вторых, Штерн учёл специфическое, не электрическое взаимодействие ионов с поверхностью твёрдой фазы. Это взаимодействие обусловлено наличием на некотором малом расстоянии от поверхности поля молекулярных (адсорбционных) сил.

Двойной электрический слой, согласно взглядам Штерна, при этом всё больше приближается к слою, предусмотренному в теории Гельмгольца, а -потенциал уменьшается, постепенно приближаясь к нулю. При разбавлении системы, наоборот, диффузный слой расширяется и -потенциал возрастает.

II.Электрокинетический потенциал

Протекание электрокинетических явлений в дисперсных системах возможно при наличии на границе раздела фаз двойного электрического слоя, имеющего диффузное строение. При относительном смещении фаз происходит разрыв двойного электрического слоя по плоскости скольжения (рис.4).

Например, разрыв двойного слоя может произойти вследствие седиментации или броуновского движения частиц дисперсной фазы. Плоскость скольжения обычно проходит по диффузному слою, и часть его ионов остаётся в дисперсной среде. В результате дисперсионная среда и дисперсная фаза оказываются противоположно заряженными. Потенциал, возникающий на плоскости скольжения при отрыве части диффузного слоя, называется электрокинетическим потенциалом или -потенциалом. Дзета-потенциал, отражая свойства двойного электрического слоя, характеризует природу фаз и межфазного взаимодействия. Т.к. плоскость скольжения может находиться на разном расстоянии от межфазной поверхности, а это расстояние зависит от скорости движения фаз, вязкости среды, природы фаз и других факторов, то соответственно от всех этих факторов зависит и значение электрокинетического потенциала. Все факторы, влияющие на толщину диффузного слоя, вызывают изменение -потенциала.

При подобных оценках обычно принимают, что . Из данного соотношения следует, что понижение температуры, введение в систему индифферентного электролита (специфически не взаимодействующего с поверхностью) и увеличение заряда его ионов ведут к уменьшению электрокинетического потенциала. Этот потенциал будет снижаться и с уменьшением диэлектрической проницаемости среды, например, при добавлении в водный раствор спиртов, эфиров и других органических веществ.

Электрокинетический потенциал, безусловно, сильно зависит от природы поверхности контактирующих фаз. В этом отношении можно выделить два крайних положения: активные и инертные поверхности. Активную поверхность имеют полиэлектролиты –полимеры, содержащие неионогенные группы, степень диссоциации которых и определяет заряд поверхности. К веществам, имеющим поверхности с ионогенными группами, можно отнести и многие неорганические оксиды (оксиды кремния, алюминия, железа и др.). На таких поверхностях -потенциал может достигать высоких значений (100мВ и более). Инертные поверхности (графит, масла и др.) лишены ионогенных групп, заряд на них возникает в результате специфической адсорбции ионов.

Специфическая адсорбция может вызвать и уменьшение -потенциала, если адсорбируются противоионы, т.к. они имеют заряд, противоположный заряду поверхности. Такая адсорбция может привести к перезарядке поверхности.

Значительное влияние на -потенциал оказывает рН среды, поскольку ионы Н+ и ОН- обладают высокой адсорбционной способностью. Особа велика роль рН среды в тех случаях, когда в контакте с водным раствором находится амфотерное вещество и при изменении кислотности среды возможна перезарядка фаз.

Можно предполагать, что при разбавлении всякой коллоидной системы -потенциал должен возрастать, т.к. толщина двойного электрического слоя увеличивается в результате уменьшения концентрации противоионов в растворе. При разбавлении может наблюдаться десорбция потенциалопределяющего иона с поверхности дисперсной фазы, что должно приводить к падению -потенциала и соответственно -потенциала. Концентрирование коллоидной системы обуславливает, конечно, прямо противоположное действие. В каком направлении в итоге изменяется -потенциал при изменении концентрации коллоидной системы, очевидно, определяется тем, влияние какого из двух факторов –утолщения (сжатия) двойного электрического слоя или десорбции (адсорбции) потенциалопределяющих ионов –в данном конкретном случае окажется сильнее.

-потенциал дисперсной фазы тем больше, чем больше полярность растворителя, которая характеризуется его диэлектрической проницаемостью дипольным моментом.

Определяемые с помощью электрокинетических явлений знак и значение -потенциала широко используется для характеристики электрических свойств поверхности. При рассмотрении адсорбции, адгезии, агрегативной устойчивости дисперсных систем, структурообразования в материалах и других важных процессах. При этом потенциал диффузной части двойного электрического слоя обычно принимают приблизительно равным -потенциалу. Например, определение изоэлектрической точки (рНиэт ) по нулевому значению -потенциала.


Страница: