Этапы определения АК последовательности в пептидах. Синтез белка
Рефераты >> Химия >> Этапы определения АК последовательности в пептидах. Синтез белка

Заменимые: глицин, аланин, аспарагин, серин, тирозин, глутамин, пролин, аспарагиновая и глутаминовая кислоты, цистеин.

Незаменимые: треонин, валин, лейцин, изолейцин, фенилаланин, триптофан, лизин, метионин, глутамин и гистидин.

Следует особо подчеркнуть, что недостаток какой-либо одной незаменимой АК ведет к неполному усвоению и других АК. Следует учитывать и видовые различия незаменимости отдельных АК.

Белковые резервы. Под термином резервные белки понимают не особые отложения белков, а легкомобилизуемые при необходимости тканевые белки, которые после гидролиза под действием тканевых протеиназ служат поставщиками АК, необходимых для синтеза ферментов и гормонов.

Наблюдения за больными в клинике свидетельствует о том, что при голодании или тяжелых инфекционных заболеваниях, когда наблюдается интенсивный распад органов, то в первую очередь снижается масса печени и мышц, без существенного изменения массы мозга и сердца. Организм как бы жертвует белками печени и мышц для обеспечения нормальной деятельности жизненно важных органов. Принято считать, что белки плазмы крови, печени и мышц могут служить в качестве “резервных”, хотя по своему существу резко отличаются от ресурсов углеводов (отложение гликогена в печени и мышцах) и липидов (отложение жиров). Существование в организме механизма срочной мобилизации белковых ресурсов в экстремальных условиях имеет важное физиологическое значение.

Аминокислоты в организме подвергаются разнообразным превращениям, все они участвуют в процессе биосинтеза белка. Установлено, что носителями наследственной информации являются молекулы ДНК, на которых закодированы генетические особенности организма, в том числе состав и структура синтезируемых белков.

Первичная структура ДНК представляет собой определенную последовательность мононуклеотидов, каждые три из которых носят названия триплет и кодируют вполне определенную аминокислоту.

Синтез белка можно условно разделить на три этапа.

1 этап – синтез информационной РНК - транскрипция. Синтез информационной РНК происходит в ядре клетки и заключается в том, что молекула ДНК, как имеющая двойную спираль, в определенные моменты раскручивается и на одной из нитей ДНК строится молекула информационной РНК. В результате этого молекула последней в точности повторяет чередование азотистых оснований ДНК и служит переносчиком генетической информации, т. е. матрицей, по которой строится белок.

2 этап – начинается с активации аминокислот при участии ферментов и АТФ с образованием комплексов – аминоациладенилатов. Для каждой АК имеется своя определенная транспортная РНК, к которой присоединяется только данная активированная АК, и такой комплекс переносится к рибосомам.

3 этап – собственно синтез белка - трансляция. На молекуле информационной РНК выделяются определенные триплеты (кодоны), которые комплементарны соответствующим антикодонам транспортной РНК. По мере передвижения информационной РНК по рибосоме происходит присоединение транспортной РНК своими антикодонами к кодонам информационной РНК и соединенные аминокислоты взаимодействуют между собой, образуя полипептидную цепь, специфичную для данного белка, т. е. его первичную структуру. В дальнейшем она подвергается спирализации и определенной упаковке в пространстве, что формирует вторичную и третичную структуру данного белка.

Регуляция биосинтеза АК.

1. Регуляция биосинтеза белка осуществляется подавлением первой стадии биосинтеза по принципу обратной связи. Первая реакция, которая обычно необратима, катализируется аллостерическим ферментом (регуляторным).

2. Генетическая репрессия и депрессия синтеза ферментов. Изменение скорости транскрипции ДНК. Репрессия происходит тогда, когда продукт данной реакции присутствует в клетке или среде в концентрации, достаточной для удовлетворения метаболических потребностей.

Переваривание белков.

Главным образом животные продукты (мясо, рыба, сыр) и только некоторые растительные (горох, фасоль, соя) богаты белками, в то время как наиболее распространенные растительные продукты содержат мало белка. Белки пищи, за редким исключением, не усваиваются организмом, если они не будут расщеплены до стадии свободных АК. Гидролиз пищевых белков осуществляется путем последовательного действия протеолитических ферментов, лишая белки пищи видовой и тканевой специфичности и придавая продуктам гидролиза способность всасываться в кровь через стенку кишечника. Гидролиз химически сводится к разрыву пептидной связи -CO-NH- белковой молекулы с присоединением элементов воды к продуктам распада.

Протеолитические ферменты относятся к классу гидролаз или пептидаз. Имеются 2 группы:

Экзопептидазы, катализирующие разрыв концевой пептидной связи и эндопептидазы, гидролизующие пептидные связи внутри пептидной цепи. Эндопептидазы – пепсин, содержащийся в желудочном соке, трипсин, химотрипсин и эластаза, синтезирующиеся в поджелудочной железе. Экзопептидазы – карбоксипептидазы А и В – синтезируются в поджелудочной железе. Аминопептидазы – вырабатываются в клетках слизистой оболочки кишечника (аланинаминопептидаза и лейцинаминопептидаза).

Процесс переваривания пептидов, их расщепление до свободных АК в тонком кишечнике завершают три- и ди- пептидазы.

В настоящее время накапливается все больше данных о более широкой биологической роли протеолитических ферментов тканей в регуляции ряда процессов в организме. Некоторые из них выполняют защитную функцию. Регуляция включает превращение неактивного предшественника в активный белок, что связано с разрывом ограниченного числа пептидных связей в молекуле белка.

В регуляции синтеза протеолитических ферментов активно принимают участие ингибиторы протеиназ белковой природы, они содержатся в поджелудочной железе, плазме крови, курином яйце.

Переваривание белков в желудке.

В желудочном соке содержится активный фермент – пепсин. Он гидролизует преимущественно пептидные связи, образованные аминогруппами ароматических кислот (фенилаланин, тирозин). Расщепляет практически все природные белки. Исключение составляют кератиды, протамины, гистоны и мукополисахариды.

Реннин катализирует свертывание (створоживание) молока, т.е. превращение растворимого казеиногена в казеин.

Переваривание белков в кишечнике:

В поджелудочной железе вырабатываются 3 белковых фермента: трипсин, химотрипсин и карбоксипептидаза.

Трипсин и химотрипсин разрывают внутренние пептидные связи. Дальнейший гидролиз пептидов до свободных АК осуществляется под влиянием карбоксипептидазы, аминопептидазы и дипептидаз. Продукты гидролиза белков всасываются в желудочно-кишечном тракте в основном в виде АК. Аминокислоты после всасывания в кишечнике, через воротную вену поступают в печень, часть из них разносится кровью по всему организму и используется для физиологических целей.

В печени используются АК:

Для синтеза белков и белков плазмы крови, пуриновых и пиримидиновых нуклеотидов, НАД. Различная скорость проникновения АК через биомембраны клеток свидетельствует о существовании в организме активной транспортной системы, обеспечивающей перенос АК как через внешнюю клеточную мембрану, так и через систему внутриклеточных мембран. Тонкие механизмы этого процесса нерасшифрованы.


Страница: