Адаптация микроорганизмов в экстремальных условиях космоса
Рефераты >> Биология >> Адаптация микроорганизмов в экстремальных условиях космоса

Однако, по мнению д-ра Багуелла, потребуется еще лет пять изучать генетическую структуру этой бактерии, прежде чем станет возможен такой эксперимент. На сегодняшний день вопрос адаптации микроорганизмов в условиях космоса остается, востребован многими исследователями в связи с тем, что в космосе проявляется приспособляемость бактерий не только к невесомости и перепадам температур, но и к различного рода излучениям, которые в космосе намного интенсивнее, чем около поверхности Земли. В Государственном научном центре Российской Федерации - Институте медико-биологических проблем (ГНЦ РФ ИМБП) были проведены исследования этой проблемы.

ПРОБЛЕМЫ МИКРОБИОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ И АДАПТАЦИЯ МИКРООРГАНИЗМОВ В КОСМИЧЕСКИХ УСЛОВИЯХ

Развитие отечественной космонавтики за последние десятилетия ознаменовалось весьма существенными результатами. Одним из основных итогов в этой области является создание и длительное функционирование орбитальных космических станций. Освоение космического пространства ставит перед человечеством много проблем. Одна из них, о которой мало известно - это мир микробов, заселяющих космический корабль. Именно микроорганизмам принадлежит абсолютный рекорд длительности пребывания в космосе. Именно они не просто живут на орбитальной станции, а развиваются, приспосабливаясь к условиям полета, обзаводятся потомством. Чем больше времени функционируют космические объекты, тем больше становится космических долгожителей - бактерий и микроскопических грибов. В настоящее время, по данным российских ученых, их насчитывается более 250 видов.

В условиях открытого космоса на микроорганизмы могут действовать такие факторы, как температура в зависимости от ориентации объектов по отношению к Солнцу в пределах от –150 до +150 ºС, УФ-облучение и космический вакуум, и, тем не менее, живые клетки микробов американские ученые обнаружили на телевизионной камере, которая в течение 2,5 лет находилась на поверхности Луны

Большой интерес к адаптации микроорганизмов к экстремальным условиям вызван поисками жизни на других планетах. Наиболее подходящая для существования на ней жизни планета Марс отличается суровыми условиями с земной точки зрения: низкими температурами, которые периодически поднимаются выше точки замерзания воды и чрезвычайной сухостью. Единственными сравнимыми с Марсом условиями на Земле являются сухие долины Антарктики. И здесь обнаружены бактерии. Знания границ жизни на Земле чрезвычайно важны, ибо по ним можно составить представление о физических и химических пределах, в которых жизнь могла возникнуть не только на нашей, но и на других планетах.

Если же говорить о возможности микроорганизмов заселять космические орбитальные станции, то здесь она практически не имеет границ. Ведь искусственная среда обитания, создаваемая и поддерживаемая в космическом объекте, является комфортной для человека и уж тем более для большинства известных микроорганизмов, которые не столь прихотливы в выборе условий жизни.

Источниками поступления микроорганизмов в среду обитания космического объекта являются как космонавты, их покровные ткани и слизистые оболочки, так и различные грузы – оборудование, расходуемые материалы, постоянно доставляемые на борт. Естественно, невозможно полностью ограничить этот процесс, т.к. человек при разговоре, кашле, физической нагрузке, да и просто при дыхании выделяет в окружающую среду значительное количество микробов. Также невозможно обеспечить тотальную стерилизацию всех поступающих в космический корабль грузов, хотя в этом направлении делается очень многое.

На каждом этапе изготовления космического корабля, при монтаже оборудования, перед стартом обязательно проводится дезинфекция. Монтажников допускают к работе только после медосмотра и в специальной сменяемой одежде. Подготовка расходуемых материалов и оборудования для комплектации космических объектов проводится в так называемых чистых помещениях, где контролируется содержание микроорганизмов не только в воздухе и на поверхностях, но и для ряда технологических процессов – на руках исполнителей.

И, несмотря на это, микроорганизмы постоянно попадают в среду обитания космических объектов и многие из них чувствуют себя там очень комфортно. Чем же чреват этот процесс для безопасности космических полетов? На самом деле положение очень серьезное. Во-первых, при снижении иммунитета человека некоторые микроорганизмы, безвредные при других обстоятельствах, могут выступать в роли агентов инфекции и аллергенов. Но есть еще один аспект этой проблемы. Это – установленная способность многих бактерий и особенно плесневых грибов вызывать биопомехи в работе различной аппаратуры, повреждать конструкционные материалы, в том числе синтетические полимеры, провоцировать коррозию металлов.

Знаменательно, что микроорганизмы ведут себя так, как, будто у них есть определенная цель. Такое поведение характерно для всех живых организмов и его называют целесообразным или телеономическим поведением. Совокупность протекающих в них процессов кажется направленной на выполнение предначертанного плана. Цель этого плана, применительно к миру микробов – использовать доступные для клетки в настоящий момент питательные вещества для образования двух клеток из одной с максимально возможной скоростью.

В этой связи следует подчеркнуть еще одну важнейшую особенность, присущую микроорганизмам. Это - способность расщеплять самые разнообразные химические соединения, которую английский ученый Гейл сформулировал как принцип “микробной всеядности”. Имеется в виду принципиальная возможность существования некоего микроорганизма, способного при подходящих условиях окислить любое вещество, теоретически способное к окислению. Таковы, на наш взгляд, общебиологические основания рассматривать потенциальные возможности бактерий и микроскопических грибов вызывать повреждения материалов в качестве одной из фундаментальных проблем обитаемости длительно действующих космических объектов.

Попадая на различные материалы, отдельные виды микроорганизмов, чаще всего бактериально-грибные ассоциации, быстро приспосабливаются к ним и начинают свою жизнедеятельность. В результате этого может изменяться цвет материалов, снижаться механическая прочность, герметизирующие свойства, диэлектрические и другие характеристики.

В настоящее время мировой ущерб от микробиологических повреждений только полимерных материалов превышает 2 % от объема промышленной продукции. Для космических орбитальных станций с учетом сроков их функционирования и требований по обеспечению надежности и безопасности их эксплуатации эта проблема стоит очень остро.

Положение усугубляется еще и тем, что из-за отсутствия сквозной вентиляции в замкнутом объеме влага, содержащаяся в воздухе, может выпадать в отдельных местах в виде росы, так называемого конденсата, содержащего большое количество химических веществ, которые микроорганизмы могут использовать в качестве источника питания. Развитие микроорганизмов могут стимулировать и физические факторы, присущие космическому полету – периодические изменения солнечной активности, радиационные уровни, градиенты магнитных полей и т.д.


Страница: