Биоритмы как факторы естественного отбора и адаптации организмов
Рефераты >> Биология >> Биоритмы как факторы естественного отбора и адаптации организмов

Содержание

Введение

История и развитие хронобиологии

Классификация биоритмов

Природа биоритмов

Циркадные биоритмы

Лунные биоритмы

Годичные биоритмы

Литература

Введение

Одним из принципов современного материалистического естествознания является принцип единства организма и среды. Составляя единство со средой обитания, все живые организмы и надорганизменнные системы обладает ритмичностью всех процессов. Их жизнедеятельность подчинена периодическим ритмам, отражающим реакции биосистем на ритмы природы и в целом всей Вселенной (астрономические, геофизические). «Весь растительный и животный мир, а с ним и человек, извечно и непрестанно испытывает на себе ритмические воздействия внешнего физического мира и извечно отвечает на биение мирового пульса ритмическими пульсирующими реакциями», писал русский социолог П. Я. Соколов.

Биологические ритмы – периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений.[1]

Эти периодические процессы существуют на всех уровнях организации живых систем и охватывают широкий диапазон частот. Чем сложнее биосистема, тем большее количество биоритмов она имеет. Биологические ритмы закреплены на генетическом уровне и являются важными факторами естественного отбора и адаптации организмов.

Наличие биоритмов обусловлено синхронизацией биохимических процессов в организме. Поскольку живой организм является иерархической системой, то он должен соразмерять ее функционирование с синхронизацией всех подуровней и подсистем не только во времени, но и в биологическом пространстве. Такая синхронизация связана с наличием биоритмов в системе. Чем сложнее система, тем больше у нее биоритмов.

История и развитие хронобиологии

Хронобиология – наука, изучающая биоритмы.

С древних времен хорошо известно, что в зависимости от времени суток листья и лепестки растений могут совершать определенные движения. Еще в 1745 году Карл Линней опубликовал свои «цветочные часы», которые позволяют по времени распускания и закрытия цветов определять время суток.

Рис. 1 Цветочные часы К. Линнея (1745)

Первые исследования суточных ритмов у человека (частота сердечных сокращений, частота мочеиспусканий, температура тела) были проведены в первой половине XIX века. В учебниках этого периода по физиологии человека можно встретить указания на существование эндогенных (возникающих в самом организме) ритмических функций. В 1928 году Forsgren открыл суточный ритм секреции желчи и накопления глюкозы в печени. В 1936 году была окончательно установлена эндогенная природа суточных ритмов цветов и растений, для чего были исключены любые внешние воздействия. Другими вехами развития хронобиологии стали открытие ориентации пчел и птиц в полете по солнцу, анализ координации ритмических функций, а также подтверждение эндогенных циркадианных ритмов человека. За счет исследований космоса, особенно за счет исключения влияния земного времени был дан новый импульс становлению хронобиологии как науки. Основной интерес при изучении биологических ритмов по-прежнему уделяется суточным, лунным и годовым ритмам, особенно с точки зрения экзогенной и эндогенной регуляции «внутренних часов».[2]

Классификация биоритмов

Существует несколько классификаций биоритмов.

Так, с точки зрения взаимодействия организма и среды выделяют:

Адаптивные ритмы (собственно биоритмы) – колебания с периодами, близкими к основным геофизическим циклам, роль которых заключается в адаптации организма к периодическим изменениям внешней среды. Их частота стабильна.

Физиологические (рабочие ритмы) – колебания, отражающие деятельность физиологических систем организма[3]. Их частота сильно варьирует в зависимости от состояния организма.

По природе возникновения:

Экзогенные ритмы – возникают как реакция на периодические изменения окружающей среды.

Эндогенные ритмы – возникают на основе саморегулирующихся процессов с запаздывающей обратной связью, при этом они подвержены воздействиям внешней среды, которые могут сдвигать фазу биоритмов и воздействовать на их амплитуду.

По уровням организации биосистемы:

клеточный

органный

организменный

популяционный

биосферный

По частоте:

1. Ритмы высокой частоты (доли секунды — 30 минут)

2. Ритмы средней частоты (30 минут — 28 ч):

3. Мезоритмы (28 ч — 7 суток)

4. Макроритмы (20 дней — 1 год)

5. Мегаритмы (десятки лет)

Наиболее распространенная в настоящее классификация F.Halberg (1969) отражает периодичность биоритмов:

Коротковолновые ритмы затрагивают отдельные клетки (например, ритм нервной деятельности) и ткани (например, ритмы электроэнцефалограммы, колебания реснитчатого эпителия и пр.).

В средневолновом диапазоне биоритмы затрагивают целые органами (например, сердце) и системы (кровообращения, дыхания, гладкой мускулатурой).

В длинноволновом диапазоне наблюдается воздействие на весь организм (ритм сна/бодрствования). Более длительный диапазон затрагивает весь организм (менструальный ритм у женщин) или целую популяцию («волны жизни»).

В зависимости от постоянной частот и их модуляции в длинно- и средневолновом диапазоне ритмы можно обозначать по их периодичности (суточные, месячные, годовые), если они являются постоянными и поддерживаются синхронизированным действием или не выходят из определенного диапазона. В коротковолновом диапазоне ритмические функции подвержены выраженной частотной модуляции, поэтому их обозначают по выполняемым им функциям (дыхательный, сердечный ритм, ритмика нервной деятельности).

В длинноволновом диапазоне ритмические процессы протекают между двумя противоположными полюсами функций, напоминая колебания маятника. В коротковолновом диапазоне на первый план выходят импульсные (релаксационные) колебания. Маятниковые колебания на графике показывают стабильную синусоиду и имеют единственную частоту. В импульсных колебаниях присутствуют высокочастотные компоненты и внезапные изменения графика.

Природа биоритмов

Согласно наиболее распространенной гипотезе, живой организм является независимой колебательной системой, которая характеризуется целым набором внутренне связанных ритмов.

Циклы обмена веществ (метаболизм и катаболизм) непрерывно происходят в клетках и представляют собой комплексы разнообразных биохимических реакций — расщепления и синтеза веществ. Вследствие этого в клетках в соответствии с метаболическими циклами постоянно происходят периодические изменения концентраций веществ (ферментов, продуктов обмена, транспортной и матричной РНК и др.), которые участвуют в многочисленных биохимических реакциях. В результате этих реакций все параметры внутренней среды живых систем находятся в состоянии непрерывных колебаний относительно соответствующих средних значений.

Датчиками, определяющими скорость и характер метаболических процессов, в живых организмах являются аллостерические модуляторы и гормоны, непрерывно контролирующие состояние организма. Организм постоянно стремится к поддержанию гомеостаза (постоянства) внутренней среды –температуры, pH, концентрации веществ, осмотического давления и др. В поддержании гомеостаза задействованы многие механизмы, в основном построенные по принципу «обратной связи». Так, избыток глюкозы в крови запускает механизм ее запасания (в виде гликогена), а недостаток – к усилению расщепления гликогена.


Страница: