Биосинтез мембранных белков и их встраивание в биомембрану
Рефераты >> Биология >> Биосинтез мембранных белков и их встраивание в биомембрану

Полипептид-предшественник, находящийся во внешней среде, при соответствующих условиях будет переноситься внутрь пузырька или, по крайней мере, через мембрану пузырька или органеллы. За этим процессом обычно следят, добавляя протеазы во внешнюю среду. Степень защиты от протеолиза является мерой количества полипептида, транспортированного внутрь везикулы или органеллы. За ходом протеолитического процесса, осуществляемого сигнальной пептидазой, следят с помощью электрофореза в полиакриламидном геле в присутствии ДСН. Белки, встроившиеся в мембрану, можно идентифицировать с помощью щелочной экстракции, при этом предполагается, что белки, которые связаны с поверхностью мембран, при такой обработке удаляются. Однако так бывает не всегда, поэтому результаты, полученные с помощью щелочной экстракции, необходимо интерпретировать с осторожностью.

В таких бесклеточных системах можно изучать биохимические условия переноса белков и идентифицировать необходимые растворимые компоненты. Кроме того, при этом можно варьировать природу переносимого полипептидного «субстрата».

При изучении бесклеточных систем были получены весьма важные данные об условиях, необходимых для переноса белков.

1. Посттрансляционный и котрансляционный перенос. Принято считать, что во всех исследованных системах перенос в мембраны или через мембраны может осуществляться независимо от трансляции. Убедительные данные на этот счет были получены для процесса переноса белков в хлоропластах и митохондриях, а также для переноса через бактериальную мембрану. Долгое время считалось, что перенос белков в эндоплазматический ретикулум или через мембраны эндоплазматического ретикулума всегда осуществляется параллельно трансляции, однако было четко показано, что такая параллельность не обязательна. Также важным считается то, что энергия, необходимая для переноса, не исходит от рибосомного биосинтетического аппарата.

2. Энергетические требования к переносу. Как правило, перенос белков в мембраны или через них энергозависим. Необходимым условием переноса как для прокариотических, так и для эукариотических систем является гидролиз АТР (или другого нуклеозидтрифосфата). Это было показано для следующих процессов: а) переноса белков в строму хлоропластов; б) транспорта белков в митохондриальный матрикс, внутреннюю и наружную мембраны; в) переноса белков через эндоплазматический ретикулум дрожжей и посттрансляционного встраивания мембранных белков в эндоплазматический ретикулум млекопитающих; г) переноса белков через цитоплазматическую мембрану Е.coli.

Еще одним независимым условием переноса белков в матрикс митохондрий и во внутреннюю мембрану митохондрий является наличие на последней трансмембранного потенциала. Этот потенциал, очевидно, необходим на ранней стадии процесса, при связывании белка с митохондрией.

3. Способность предшественника к переносу. Имеются веские доводы в пользу того, что ключевую роль в успешном переносе белка играет его четвертичная структура. Скорее всего это связано с тем, что сигнальная последовательность(ти), узнаваемая аппаратом переноса, должна быть доступна для него. Следовательно, для осуществления переноса белок должен быть неплотно свернут или частично развернут. Кроме того, если белки переносятся через мембрану в вытянутой конформации, то аппарат переноса должен быть способен к их развертыванию во время самого процесса переноса. Если бы белки- предшественники обладали стабильной четвертичной структурой, то они с трудом развертывались бы и, следовательно, не были бы способны к переносу.

Транспорт белков осуществляется в развернутом виде. АТР необходим для разворачивания полипептида. Разворачивание происходит до переноса или параллельно ему. На то, что именно АТР необходим для этого процесса, говорит тот факт, что транспорт укороченных предшественников в отличие от транспорта полноразмерного белка может осуществляться в отсутствии АТР. Впервые эти данные были сделаны на основе изучения митохондриальной мембраны. Для предотвращения свертывания предшественника в нативную конформацию необходим какой-либо растворимый белковый кофактор. Так, был выделен в водорастворимой форме, сходный порином митохондрий, предшественник белка наружной мембраны Е.coli OmpA, который был не способен к эффективному переносу через плазматическую мембрану, если в цитозоле отсутствовал белок, называемый «триггер-фактором». Известно также, что для переноса белков через мембраны эндоплазматического ретикулума млекопитающих или в эндоплазматичекий ретикулум необходим растворимый кофактор, а именно – сигнал-распознающая частица (СРЧ). Возможно, роль этого фактора состоит в предотвращении сворачивания предшественника полипептида.

2. Встраивание белков в мембрану

2.1 Сигнальная гипотеза

Белки встраиваются в мембрану разными способами, но детали этого процесса во многих случаях еще не установлены. Для объяснения механизма встраивания предложены две модели: сигнальная гипотеза и мембранная триггерная гипотеза. В сигнальной гипотезе предполагается, что белок включается в мембрану параллельно его трансляции на мРНК в полирибосомах; это так называемое котрансляционное включение. Когда лидерная последовательность выходит из рибосомы, она выявляется некой сигнал-распознающей частицей (СРЧ), которая блокирует дальнейшую трансляцию на уровне примерно 70 аминокислот, 40 из которых остаются в большом рибосомном комплексе, а 30 экспонированы в среду. СРЧ содержит шесть белков, с ней ассоциирована 7S-РНК, близкородственная «Alu-семейству» последовательностей ДНК с большим числом повторов. Блокирование трансляции не снимается до тех пор, пока комплекс СРЧ-лидерная последовательность – рибосома не свяжется с так называемым «отстригающим» белком (рецептором для СРЧ) эндоплазматического ретикулума. В этот момент начинается котрансляционное встраивание в эндоплазматический ретикулум. В процессе элонгации оставшейся части белка он перемещается через липидный бислой, поскольку рибосома остается присоединенной к эндоплазматическому ретикулуму. Таким образом образуется шероховатый (усеянный рибосомами) эндоплазматический ретикулум. Рибосомы остаются прикрепленными к эндоплазматическому ретикулуму втечении всего времени синтеза мембранного белка и освобождаются и диссоциируют на соответствующие субъединицы только после его завершения. Когда ранее синтезированная часть белка выходит в просвет эндоплазматического ретикулума, отщепляется лидерная последовательность, и присоединяются углеводы.

Интегральные мембранные белки не пересекают мембрану целиком; по-видимому, этому препятствует гидрофильная якорная последовательность на С-конце. Секретируемые же белки проходят сквозь мембранный бислой полностью и высвобождаются в просвет эндоплазматического ретикулума. К моменту их поступления внутрь везикулы углеводные остатки уже оказываются связанными с ними. Впоследствии секретируемые белки обнаруживаются в просвете аппарата Гольджи, где происходит модификация их углеводных цепочек, а затем они перемещаются к специфическим внутриклеточным органеллам или клеточным мембранам либо секретируются. Некоторые белки пересекают одну мембрану, а затем заякориваются в другой, соседней мембране, например внутренней мембране митохондрий.


Страница: