Важнейшие достижения естествознания 19 века
Рефераты >> Биология >> Важнейшие достижения естествознания 19 века

Менделеев был настолько уверен в своей правоте, что пришел к заключению о существовании соответствующих этим клеткам элементов и подробно описал их свойства. Он назвал их экабор, экаалюминий, экакремний. Никто из предшественников Менделеева не рискнул предугадывать существование и свойства неоткрытых элементов. И все же часть химиков была настроена скептически и их недоверие не удалось бы преодолеть, если бы смелые идеи Менделеева не подтвердились столь блестяще.

Периодический закон Д.И.Менделеева и Периодическая система химических элементов стали основой современной химии, проложив путь к предсказаниям и планомерным поискам еще не открытых химических элементов и новых химических соединений.

Физическая химия

Открытия, происходившие в физике XIX столетия, в частности, в термодинамике, не могли не повлиять на развитие химии. Ведь в конечном итоге основными источниками теплоты в XIX веке (кроме Солнца) были химические реакции: горение дерева, угля, нефти. Химикам было также известно, что практически все химические реакции сопровождаются тем или иным тепловым(а иногда и световым) эффектом.

В 1840 году после опубликования работ русского химика Германа Ивановича Гесса граница между миром физики и химии была разрушена. Гесс показал, что количество теплоты, получаемой или поглощаемой при переходе от одного вещества к другому, всегда одинаково и не зависит от того, с помощью какой реакции или сколькими этапами осуществлялся переход. Благодаря этому обобщению (закон Гесса) Гесса считают основателем термохимии. Исходя из закона Гесса, закон сохранения энергии равно применим и к химическим, и к физическим процессам.

В 1850 году Уильямсон тщательно изучил обратимые химические реакции. Работа Уильямсона ознаменовала начало изучения химической кинетики – области химии, изучающей скорости химических реакций. Уильямсон ясно показал, что самопроизвольный характер химической реакции в ряде случаев определяет не просто выделение теплоты, а нечто большее.

В 1863 году Като Гульдберг и Петер Вааге нашли константу химического равновесия, а также закон действия масс. Они полагали, что направление реакции определяется не просто массой отдельных веществ, а скорее массой отдельных веществ, приходящейся на данный объем реагирующей смеси, другими словами - концентрацией веществ.

Тем временем американский физик Джозайя Гиббс Уиллард начал систематическое изучение термодинамики химических реакций. Он ввел понятие свободная энергия, и объяснил суть закона действия масс. Скорость, с которой меняется свободная энергия при изменении концентрации отдельного вещества, называется химическим потенциалом системы, и Гиббсу удалось показать, что именно химический потенциал является «движущей силой» химических реакций. Химическая реакция идет самопроизвольно от точки с высоким химическим потенциалом, подобно тому как теплота самопроизвольно передается от точки с высокой температурой к точке с низкой температурой. Работы Гиббса составили фундамент современной химической термодинамики. Причем Гиббс сделал так много, что его последователи по существу лишь развивали его идеи.

Катализ. Выдающийся немецкий ученый Фридрих Вильгельм Оствальд занимался изучением катализа. Катализатор, утверждал он, образует с исходным веществом промежуточное соединение, которое распадается на конечные продукты реакции. При распаде промежуточного соединения катализатор высвобождается. Таким образом, катализатор ускоряет реакцию, но сам при этом не расходуется. Кроме того, поскольку молекулы катализатора используются снова и снова, для ускорения реакции большого количества веществ достаточно небольшого количества катализатора.

Этот взгляд на катализ сохраняется и сегодня. Он помог объяснить механизм действия ферментов, управляющих химическими реакциями в живых тканях.

В 1888 году А. Ле Шателье открыл правило, получившее название принципа Ле Шателье. Согласно этому правилу, любое смещение системы в таком направлении, которое уменьшает первоначальное изменение. Как оказалось, химическая термодинамика Гиббса четко объясняла принцип Ле Шателье.

Новые исследования в области физической химии показали, что химические реакции связаны не только с теплом, как таковым, а скорее с энергией вообще.

В XIX веке начинает развиваться фотохимия – область химии, изучающая индуцируемые светом реакции. Среди ее достижений изобретение фотографии, использование света как катализатора и последующие фотохимические цепные реакции и т.д.

Ионная диссоциация. Крупнейшим физико - химиком на рубеже XIX XX вв. наряду с Вант-Гоффом и Оствальдом был шведский ученый Сванте Август Аррениус. Еще будучи студентом, он заинтересовался электролитами, т.е. растворами, способными пропускать электрический ток. Аррениус пришел к мысли, что при растворении в растворителях, подобных воде, определенная часть молекул распадается на отдельные атомы. Более того, поскольку эти распавшиеся молекулы проводят электрический ток, Аррениус предположил, что молекулы распадаются не на обычные атомы, а на атомы, несущие электрический заряд. Это составило основу теории ионной диссоциации. С помощью этой теории ионной диссоциации Аррениус объяснил многие электро- химические явления. В 1889 году Аррениус выдвинул другую плодотворную идею. Он указал, что молекулы, сталкиваясь, не реагируют, если не обладают определенным минимумом энергии, иначе говоря, энергией активации. При малой энергии активации реакции проходят быстро и беспрепятственно, при высокой энергии активации реакция может протекать с бесконечно малой скоростью.

Синтетическая органическая химия

Первая половина XIX века ознаменовалась развитием новой области химии – синтетической органической химии. Химики начали соединять в цепи органические молекулы. Уильям Генри Перкин пытался получить хинин – ценное лекарственное средство против малярии. Однажды обработав анилин бихроматом калия, разочарованный результатом Перкин уже собрался выбросить полученную массу, как вдруг заметил, что она приобрела пурпурный оттенок. Перкин добавил спирт и извлек из реакционной смеси вещество, окрасившее спирт в великолепный пурпурный цвет.

Перкин понял, что у него в руках краситель. Впоследствии он первым организовал промышленное производство синтетического красителя и быстро разбогател.

Несколько лет спустя после поразительного успеха Перкина химики познакомились со структурными формулами органических соединений. Эти формулы могли помочь подобрать методы, позволяющие синтезировать новые органические соединения не случайно, а уже целенаправленно. Так в 1867г. Адольф Байер синтезировал индиго, в 1868г. Карл Гребе синтезировал важный природный краситель – ализарин.

Вслед за Перкином химики начали синтезировать соединения все возрастающей сложности. Синтез обычно позволял установить молекулярное строение, что всегда представляло огромный теоретический, а иногда и практический интерес.

Эти и подобные им достижения заложили основы теории и технологии прикладной химии, благодаря успехам которой наша жизнь преобразилась столь значительным образом и продолжает преображаться в еще более ускоренном темпе.


Страница: