Водно-солевой обмен
Рефераты >> Биология >> Водно-солевой обмен

В самом общем виде живой организм можно описать как водный раствор заключенный в оболочку — поверхность тела. Объем организма и концентрация растворенных веществ должны сохраняться постоянными в довольно узких пределах, так как для оптимального функционирования организма требуется совершенно определенный и относительно неизменный состав жидкостей тела.

Значительные отклонения от нормального состава обычно несовместимы с жизнью. Перед живым организмом стоит задача поддержать надлежащие концентрации растворенных веществ в жидкостях тела, несмотря на то, что они почти всегда отличаются от соответствующих концентраций во внешней среде. Разница концентраций стремится выравняться, нарушая требуемое постоянство внутренней среды. Живые организмы сводят к минимуму возникающие трудности, уменьшая градиенты или проницаемость. Тем не менее всегда происходит некоторая диффузионная утечка, и постоянство внутренней среды не может сохраняться, если организм не создает противоток, в точности равный этой утечке.

Задачи поддержания постоянных концентрации воды и растворенных в ней веществ меняются в зависимости от окружающей среды, и они совершенно различны в морской воде, в пресной воле и на сушe. Водных животных, переносящих большие колебания концентраций солей в воде, называют эвригалинными (от греч. эурис - широкий, галос - соль), животных же, обладающих ограниченной толерантностью (терпимостью) к изменениям концентрации солей, — стеногалинными (от греч. стенос — узкий). Когда животное гипертонично по отношению к окружающей среде, оно сталкивается с двумя физиологическими «трудностями»:

1) вода стремится проникнуть внутрь тела из-за более высокой концентрации веществ жидкостей организма;

2) растворенные вещества стремятся выходить наружу, так как их внутренняя концентрация выше. Большую роль в преодолении этих трудностей играют процессы активного транспорта веществ.

Самое большое преимущество жизни на суше состоит в доступности кислорода, наибольшей угрозой для наземной жизни является опасность обезвоживания.

Наиболее успешно переход к наземной жизни осуществили членистоногие и позвоночные, они хорошо приспособлены к жизни на суше, имеют ряд приспособлений, предотвращающих потерю воды.

Растения тоже обладают рядом защитных приспособлений, оберегающих организм от избыточных концентраций солей, а так же активными механизмами поглощения тех ионов, которых мало в питательном субстрате. Корневая система-первый, очень важный барьер на пути солей из почвы в надземную часть растении, здесь задерживается значительная часть избыточных ионов и токсических солей. Однако эти защитные возможности не безграничны: при очень высоких концентрациях в почве отдельных ионов, они в избытке поступают и в листья.

По отношению к солям все растения делят на гликофиты (растения пресных мест обитания) и галофиты (растения засоленных местообитаний).

Способность растений выносить засоление может быть обусловлена разными причинами:

I)устойчивость протоплазмы к накоплению солей в больших концентрациях

2 ) избыточных солей через поры листьев и стеблей (лох, томарикс);

3) малой проницаемостью клеток корня для солей

Особенно острым моментом для растения в поддержании постоянства внутренней среды является водный баланс поглощения СО2 воздуха при фотосинтезе у растений в процессе эволюции выработалась обширная площадь листовой поверхности. Но через большую поверхность идет непрерывное испарение воды в громадном количестве. Одно растение кукурузы, например, за вегетацию испаряет до 180 кг воды.

Тем не менее у растений механизмы, позволяющие восполнять эти потери и поддерживать водный баланс.

Содержание и роль воды в организме, водный обмен

Вода составляет около 75% биомассы Земли, однако ее содержание в разных видах живых организмов, различных их тканях и органах колеблется в широких границах. Так, биологические жидкости (кровь, лимфа, слюна, пасока деревьев) содержат 88-99% воды, в то время как в костной ткани животных, древесине растений ее значительно меньше — 20—45%, в зерне злаковых (воздушно-сухое состояние) — 12—14%. Своеобразными рекордсменами по содержанию воды являются медузы — до 99,8%.

У бактерий на воду приходится 75—85% массы клетки, у спор —40% и меньше. Чем моложе организм или орган, тем выше в нем содержание воды. Например, у 4-месячного эмриона человека воды содержится 94%, у новорожденного ребенка – 74%, у взрослого человека — около 67%

В молодых листьях травянистых растении количество воды колеблется в переделах 85-90%, а в старых 70—80%.

Большую часть воды в организме (у человека до 2/3) составляет внутриклеточная вода; меньшую часть (у человека около 1/3)-внеклеточная вода, которая разделена на субкомпартменты: интерстициальная, синовиальная и др. Распределение воды в теле человека неравномерно, наименьшее количество ее содержат кости (45% и жировая ткань, наибольшее — кровь (92%), моча (83%), слюна 99%, пот (97%).

Вода в живом организме может быть в свободной и связанной форме. Если и водном растворе содержатся ионы какого-либо электролита, то вокруг них ориентируются диполи воды, так как ионы обладают зарядом. Вокруг катионов диполи воды располагаются своими отрицательно заряженными концами, вокруг анионов — положительно заряженными. Такое связывание воды называется электростатической гидратацией.

Высокомолекулярные соединения тоже гидратируются, если содержат полярные, ионогенные группировки (карбоксикпьные, альдегидные, спиртовые, аминогруппы и др.). При этом гидратная оболочка может быть не сплошной, а только вокруг полярных групп. Степень гидратации различных ионов и молекул не одинакова, зависит от размеров частиц и величины их заряда. Чем выше удельная плотность заряда (больше заряд и меньше размеры), тем сильнее гидратация. Молекулы воды располагаются при гидратации тремя слоями:

1) непосредственно около иона, строго упорядочены и ориентированы сильным электрополем;

2) слой воды на некотором отдалении от иона, ориентированность молекул воды меньшая;

3) далеко отстоящие от иона молекулы воды с обычной структурой

Благодаря гидратации ионов и молекул часть воды в организме находится в связанном состоянии. Водородные связи макромолекул удерживают часть молекул воды.

Вокруг молекул белка, например, слой строго структурированной воды достигает толщины 1—2 нм и составляет до 30% массы гидратированной белковой молекулы. Следующий слой гидратационной воды — до 10 нм, и вода еще сохраняет в нем некоторую ориентацию. Кроме того, вода входит в третичную структуру ряда макромолекул и надмолекулярных структур. Помимо того, что вода связана непосредственно на молекулярном уровне, она входит и в состав субклеточных рибосом, лизосом, мембран митохондрий, эндоплазматического ретикулума, ядерной оболочки. Воду, связанную субклеточными образованиями, называют иммобильной водой. Слабосвязанная вода может служить растворителем, замерзает при температурах, близких к О0 С. Прочносвязанная вода почти не способна быть растворителем, она замерзает при темперах значительно ниже 0°С.


Страница: