Гемостаз у позвоночных и беспозвоночных животных
Рефераты >> Биология >> Гемостаз у позвоночных и беспозвоночных животных

План:

Введение

1 Гемостаз у позвоночных животных

2 Гемостаз у беспозвоночных животных

Заключение

Введение

Клетки многоклеточного организма живут и контактируют со своей собственной жидкой средой. Эта среда состоит из плазмы крови, тканевой жидкости и лимфы и называется жидкой внутренней средой организма. По составу она отличается от внешней среды, окружающей целый организм. Поэтому существует жизненно важная необходимость в случаях нарушения его целостности в сохранении этой жидкой внутренней среды в пределах ее естественного русла. У высших позвоночных животных и человека в процессе эволюции возникла система свертывания крови. Причем значение свертывающей системы у высших организмов значительно шире понятия гемостаза или остановки кровотечения при нарушении целостности сосудистой стенки.

Свертывание крови — это защитная реакция организма. Выпущенная из сосуда кровь свертывается в течение 3-4 минут, т. е. переходит из жидкого состояния в желеобразное. Свертывание крови обусловлено тем, что растворимый белок плазмы крови фибриноген превращается в нерастворимый фибрин.

До недавнего времени решающее значение в осуществлении гемостаза приписывалось свертывающей системе крови. Однако современные исследования вновь показали, что на повреждение кровеносных сосудов первыми реагируют сами сосуды (спазм, открытие шунтов выше места повреждения) и клетки крови — тромбоциты и отчасти эритроциты. Известно также, что тромбоцитам, а не свертыванию крови, принадлежит ведущая роль в первичной остановке кровотечений из микрососудов (диаметром до 100 мкм), наиболее ранимых и чаще всего бывающих источником геморрагий. Вследствие этих причин сосудистотромбоцитарная реакция на потерю крови часто обозначается как начальный, или первичный, гемостаз, а свертывание крови — как вторичная гемостатическая реакция, хотя оба эти механизма включаются не строго последовательно друг за другом, а на значительном отрезке времени функционируют одновременно и сопряженно.

Гемостаз реализуется в основном 3 взаимодействующими между собой функционально-структурными компонентами — стенками кровеносных сосудов, клетками крови и плазменными ферментными системами—свертывающей, фибринолитической (плазминовой) и др. Система подчинена сложной нейрогуморальной регуляции и в ней четко функционируют механизмы положительной и отрицательной обратной связи, вследствие чего клеточный гемостаз и свертывание крови вначале подвергаются самоактивации, дальнейшая регуляция связана с нарастанием антитромботического потенциала крови. Эти механизмы создают условия для самоограничения процесса свертывания, в силу чего локальная активация системы в местах тромбообразования не трансформируется при правильном функционировании указанных механизмов во всеобщее свертывание крови. О. К. Гаврилов систему гемостаза и все механизмы, регулирующие ее структуру и функцию, называет системой регуляции агрегатного состояния крови; обеспечивающей поддержание необходимого гемостатического потенциала.

1 Гемостаз у позвоночных животных

Потерю крови при разрыве кровеносных сосудов помогают предотвращать несколько механизмов. Большая кровопотеря ведет к снижению кровяного давления и тем самым замедляет вытекание крови из поврежденного участка. Поврежденные сосуды сжимаются и таким образом уменьшается поток крови. Однако самый важный механизм – это закупорка кровеносных сосудов в месте повреждения пробкой, состоящей из свернувшегося белка и клеточных элементов крови. Такая пробка полностью останавливает кровотечение при незначительных повреждениях, но если разорваны крупные сосуды, ее недостаточно.

Механизм свертывания крови хорошо изучен у млекопитающих и человека, т.к. этот процесс имеет большое значение в медицине. Для того чтобы механизм свертывания был эффективным, он должен действовать быстро, а в тоже время кровь внутри сосудистой системы не должна загустевать. Поэтому крови должна быть внутренне присуща способность свертываться, и соответствующий механизм должен быть готовым включиться, как только это будет нужно. С другой стороны, иметь такой механизм – все равно, что сидеть на бомбе; необходимы все предосторожности против его случайного срабатывания.

У позвоночных кровяной сгусток состоит из белка фибрина – нерастворимого фибриллярного белка, образующегося из фибриногена – растворимого белка, который содержится в нормальной плазме в количестве окло 0,3 %. Для превращения фибриногена в фибрин необходим катализатор – фермент тромбин, и кровь не свертывается внутри сосудистой системы именно потому, что в циркулирующей крови этого фермента нет. Однако тромбин может быстро образоваться, т.к. его предшественники – протромбин – в плазме уже имеются. Для инициации свертывания необходимо, чтобы из протромбина образовался тромбин. Но это только последний шаг в сложной последовательности биохимических реакций, которую медленно расшифровали, изучая больных с различными дефектами механизма свертывания. Всего идентифицировано 12 факторов свертывания крови, которым даны номера от I до XIII. Несколько конечных этапов показано на следующей схеме:

Это сложный физиологический процесс, протекающий в несколько фаз. Главные его участники — это стенка сосуда, нервная система и тромбоциты крови. Первичный гемостаз начинается прежде всего с первичного сосудистого спазма рефлекторной природы. Затем начинается так называемая эндотелиально-тромбоцитарная реакция. На месте травмы эндотелий сосуда меняет свой заряд. Тромбоциты, занимающие в сосуде краевое положение, начинают адгезировать (прилипать) к поврежденной поверхности сосуда и агглютинировать (склеиваться) между собой. В результате через 2—3 минуты наступает третья фаза — фаза образования «тромбоцитарного гвоздя». В течение этой фазы происходит остановка кровотечения, однако свертывания крови еще не произошло; плазма крови остается жидкой. Образовавшийся тромб рыхлый, и еще в течение короткого времени процессы имеют обратимый характер. Четвертая фаза заключается в том, что в образовавшемся тромбе начинаются морфологические превращения тромбоцитов, которые приведут к их необратимым изменениям и разрушению. Это вязкий метаморфоз тромбоцитов. В результате вязкого метаморфоза из тромбоцитов выходят содержащиеся там факторы свертывания. Их взаимодействие приводит к появлению следов тромбина, который и запускает каскад химических ферментативных реакций — ферментативное свертывание.

Многие этапы механизма свертывания могут показаться лишним усложнением, и они сильно затруднили выяснение действительного хода событий. Биологическое значение такой сложности, по-видимому, состоит в том, что механизм свертывания крови работает как биохимический усилитель. Он обычно приводиться в действие при контакте крови с инородной поверхностью или поврежденными тканями. Это инициирует цепь ферментативных реакций, в которой фермент, образовавшийся на первом этапе, служит катализатором или активатором для следующего этапа, и т.д. Таким образом создается «ферментативный каскад», завершающийся образованием кровяного сгустка, когда растворимый фибриноген переходит в нерастворимый фибрин.


Страница: