Генетический анализ при взаимодействии генов
Рефераты >> Биология >> Генетический анализ при взаимодействии генов

ВЗАИМОДЕЙСТВИЕ НЕАЛЛЕЛЬНЫХ ГЕНОВ

После вторичного открытия законов Менделя было описано несколько случаев взаимодействия неаллельных генов, приводящего к формированию новых признаков. Взаимодействовать могут два неаллельных гена и более, однако лучше всего изучены взаимодействия первого типа. Бэтсон и Пеннет обнаружили образование новых признаков при анализе формы гребня у кур. Авторы скрещивали петуха с розовидным гребнем с курицей, имеющей гороховидный гребень (рис. 3.1). Казалось бы, поскольку скрещиваемые особи различаются по одному признаку, в FI следует ожидать доминирования одной из форм, а в р2 - расщепления 3:1. Действительные результаты скрещивания оказались резко отличными от ожидаемых. В FI все птицы имели гребни не такие, как у родителей,- эти гребни называются ореховидными. В р2, полученном от скрещивания петухов и кур с ореховидными гребнями, были обнаружены четыре фенотипических класса: два родительских (розовидный и гороховидный) -по 3 части от всего потомства, ореховидный - 9 частей и новый тип гребня (простой или листовидный) - у Vie потомства. Расщепление по фенотипу 9:3:3:1 ясно указывает, что имеет место дигибридное скрещивание. Для объяснения необычного характера наследования формы гребня была предложена гипотеза, согласно которой неаллельные гены R и Р, определяющие розовидный и гороховидный гребни, взаимодействуют друг с другом, причем результаты взаимодействия зависят от того, в какой форме находится каждый из генов - в доминантной или рецессивной. Из схемы рис. 3.1 видно, что ореховидный гребень образуется тогда, когда оба гена имеют у данного организма.

Среди типов взаимодействия неаллельных генов, различают комплементарность, эпистаз, полимерию и действие генов-модификаторов.

Комплементарное действие генов наиболее четко проявляется, когда скрещиваются две белые формы некоторых животных (кур) или растений (душистого горошка, белого клевера, кукурузы), а в потомстве появляются окрашенные формы. При скрещивании двух рас душистого горошка с белыми цветками (Lathyrus odoratus) в FI формируются растения с пурпурной окраской. При самоопылении этих растений в р2 наблюдается отклонение от менделевского расщепления: 9/ie растений имеют цветки с пурпурной окраской, тогда как 7/ie- с белой. В этом случае сущность взаимодействия генов, так же как при образовании ореховидного гребня у кур, состоит в том, что окрашенные цветки появляются при взаимодействии двух неаллельных доминантных генов А и В.

Генотипы растений с неокрашенными цветками могут быть AAbb или ааВВ; если такие растения скрещиваются, то генотип растений FI будет АаВЬ. Это значит, что все растения этого поколения будут иметь пурпурные цветки. У кукурузы установлено, что для возникновения окрашенных семян необходим антоциан, который образуется только в присутствии двух доминантных генов А и В.

Эпистатическое действие генов. Эпистаз - подавление действия одного гена другим, не аллельным, геном. Ген-подавитель, или супрессор, действует на подавляемый гипостатический ген по принципу, близкому к доминантности - рецессивности. Разница тут состоит в том, что эпистатический и гипостатический гены не являются ал-лельными, т. е. занимают различные локусы в гомологичных или негомологичных хромосомах. Эпистаз широко распространен в природе, в некоторых случаях изучены биохимические механизмы эпистатических взаимодействий. Так, у домашних птиц, в частности у кур, имеется зпистатическая система из двух генов, влияющих на окраску оперения. Эпистатический ген сам по себе не влияет на окраску пера. В то же время ген С в доминантной форме определяет нормальную продукцию пигмента. Однако белые леггорны с генотипом ССП не имеют пигмента в результате действия эпистатического гена. Есть и другие белые породы кур, окраска которых определяется другим генотипом. Так, оперение белых виандотов обусловлено тем, что они гомозиготны по рецессивным генам ее и ii, тур.-и по гипостатическому, и по эпистатическому генам. Расщепление при эпистазе, которое является результатом дигибридного скрещивания, отличается и от классического менделевского, и от того, которое наблюдается при комп-лементарности

Анализ данных на решетке Пеннета показывает, что только у 3/i6 потомства будет присутствовать ген С в доминантной форме и одновременно эпистатический ген в рецессивной форме i. Соотношение белых и пестрых птиц составит 13:3. Этот тип взаимодействия неаллельных генов называют доминантным эпистазом. В отличие от него при рецессивном эпистазе рецессивная аллель одного гена, будучи в гомозиготном состоянии, подавляет проявление доминантной или рецессивной аллели другого гена, В этом случае вместо ожидаемого при дигибридном скрещивании расщепления 9:3:3:1 получается отношение 9:7.

Полимерия. До сих пор рассматривалось действие генов, определяющих контрастирующие, альтернативные признаки. С такого рода генами имел дело Мендель, экспериментируя на горохе. Однако уже с первого десятилетия XX в. известны гены, одинаково влияющие на признаки. Их действие может быть тождественным, но чаще бывает аддитивным, т. е. суммирующимся. В первом случае для развития признака достаточно присутствия одной из аллелей у дигетерозиготы в доминантной форме, тогда как аддитивное действие выражается в степени проявления признаков в зависимости от числа доминантных аллелей. Так, при аддитивном действии фенотип будет более выражен при генотипе ААВВ, чем при АаВЬ.

Признаки, зависящие от аддитивных полимерных генов, обычно относятся к количественным, или мерным, признакам. Если, скажем, по группам крови А, В, АВ или О вид Homo sapiens распределяется на четыре четких класса, то по такому показателю, как рост, обнаруживается вариабельность: рост большинства людей находится в пределах 145-184 см. Количественных признаков известно много, и они не представляют собой какого-либо исключения. Это масса животных, удойность коров, содержание основных химических компонентов в молоке и др. Колос пшеницы может содержать от нескольких до нескольких сотен зерен; так же широко варьирует количество яиц, откладываемых самками дрозофилы. К количественным признакам относятся особенности нервной деятельности животных и человека. Главная черта количественных признаков заключается в том, что различия по ним между отдельными индивидами могут быть очень небольшими, поэтому для установления реальности этих различий необходимы точные измерения. Гены, определяющие вариабельность количественных признаков, называются полигенными или множественными факторами.

В некоторых случаях их эффект идентичен, в других - отдельные полигены могут оказывать разное в количественном отношении влияние на признак. Существование полигенов было убедительно доказано шведским генетиком Г. Нельсо-ном-Эле в 1908 г. при изучении окраски зерен у пшеницы. Он выяснил, что полигены наследуются по менделевским законам, хотя влияние их на фенотип, а следовательно, и расщепление в р2 отличаются от соответствующего расщепления генов, определяющих альтернативные признаки. Нельсон-Эле работал с несколькими линиями пшеницы, окраска зерен которых варьировала от темно-красных до белых (неокрашенных). При скрещивании растений с темно-красными и белыми зернами расщепление в F2 соответствовало моногибридному-3:1. С другой стороны, гибридное потомство FI от скрещивания рас с белыми и слабоокрашенными красными зернами имело окраску, промежуточную между окраской родительских форм. В этом случае, казалось, речь идет о неполном доминировании, что и было подтверждено результатами расщепления в р2: одна часть растений имела красные семена, две части - промежуточные по окраске, как и в FI, и одна часть - белые семена. Однако когда скрещивались другие линии пшеницы с белыми и красными семенами, в Р*2 обнаруживались пять типов окраски зерен различной степени интенсивности - от темно-красных до совершенно бесцветных. В целом растений с окрашенными семенами было 15/i6, тогда как с белыми семенами – 1/16


Страница: