Исследование законов Вселенной
Рефераты >> Биология >> Исследование законов Вселенной

Образование атомов

В нейтроне электрон постоянно находится в состоянии колебательного движения. Допустим, на рис.10 электрон находится на возможно близком расстоянии от протона, в пределах которого совершается его колебательные движения. В наиблизком расстоянии друг от друга электрон не имеет поля, протон имеет - малый размер. По мере удаления друг от друга электрон и протон приобретают частицы полей из окружающей среды, допустим, до размеров, то есть нейтрон возбуждает приливную волну среды частиц м- и м+. При сближении друг к другу электрон и протон теряют свои поля до величин рис.10, возбуждая отливную волну. Таким образом, существование нейтрона сопровождается возбуждением им волн ~рм±, причём в волне составляющая ~рм- больше составляющей ~рм+, так как у электрона размер поля меняется больше чем у протона. Частота волн конечно же значительно выше известных до настоящего времени, длина волна соизмерима с размерами Э и П.

(Если б мы могли увидеть нейтрон, то воскликнули бы: « он дышит, он живой!». Позже выясним, что и все атомы дышат, тоже живые).

Естественно, волны ~рм- и ~рм+ влияют на свободные электроны и протоны.

Рассмотрим раздельно действие ~рм- и ~рм+. На рис.12. изображен находящийся вблизи нейтрона Н электрон Э. Допустим, вначале на Э набежала отливная (от нейтрона) волна ~рм- в левую его половинку, изображено стрелкой F1в амплитудной величины.

Частицы м- являются частицами оболочки и поля электрона, поэтому в электроне волна распространяется. Так как волна содержит общенаправленное движение частиц, она оказывает давление F1в на ядро. Далее, волна набежала в правую половинку электрона. Сила волны в правой половинке слабее, чем в левой, она дальше от нейтрона, изображено пунктирной стрелкой, более короткой, чем F1в. Уходящая волна не оказывает давления на ядро электрона.

Из рассмотренного следует вывод: волна ~рм- отталкивает электрон, притягивает протон; волна ~рм+ притягивает электрон, отталкивает протон.

В волне дыхания нейтрона преобладает составляющая ~рм-, следовательно, с ним может соединиться протон за счёт сил +Fв и +F1о, в сумме преодолевающих. Протон войдёт в зону действия сил +F3о и -F4о и будет совершать колебательные движения относительно нейтрона. Естественно, задающими колебание являются протоны (тяжеловесы), возбуждающие волну ~рм+. Приближаясь друг к другу они возбуждают отливную волну, в которой электрон испытывает давление к источнику волн и наоборот при приливной волне, то есть все они колеблются синхронно - одновременно приближаются друг к другу, одновременно удаляются.

В частице Н+П два протона, в возбуждаемой ею волне преимущество ~рм+, поэтому она может присоединять электроны. Электроны будут входить в частицу совершая синхронно с ней колебания. По мере увеличения количества электронов составляющая ~рм_ будет увеличиваться. С наступлением равновесия ~рм+ и ~рм-, при котором силы притяжения и отталкивания Fв на электрон будут равны, вход электронов в частицу-ядро Н+П прекратится; соединение будет представлять собой атом дейтерия.

При образовании нейтрона электрон начал испытывать силу Fо вследствие её затенения от Пространства одним протоном на расстоянии, обозначим, L1FЭ. При образовании дейтерия электроны начали испытывать Fo от затенения двумя протонами, поэтому L2FЭ > L1FЭ. Так как м+ > м-, протон при соединении с нейтроном начал испытывать Fo на расстоянии L1FП < F1FЭ < F2FЭ. Это определяет на каком среднем расстоянии друг от друга будут находиться частицы в атоме.

В частице Н+П протон может находиться в двух возможных зонах действия сил Fo: первая зона +F3о -F4о, вторая +F5о -F6о. Во второй зоне протоны будут друг к другу ближе, чем электрон к ним, по выше упомянутой причине. Из-за близости их поля сольются в одно увеличенное поле (силой обособления частиц равных величин), электрон же, находясь в их поле, лишится поля. Такие частицы могут соединяться друг с другом (аналогично m2). Возбуждаемые ими волны ~рм+ отталкивают их друг от друга, но силы Fо оказываются более сильными и дальнодействующими из-за их размеров. Образуются скопления:

(Н + П) К1.

К1 - количество частиц. Такое скопление представляет ядро атома. Ядро возбуждает волны ~м±; ~рм+ >>~рм-, поэтому приобретает электроны. По мере увеличения количества электронов уменьшается составляющая ~рм+ увеличивается ~рм-.С наступлением равновесия вход электронов в атом прекращается.

По мере увеличения размера частицы (Н+П)К1 увеличивается расстояние возникновения сил Fo в свободных протонах, так что они так же могут соединиться с (Н+П) К1, преодолев -Fв волн ~рм+.

Образуется ядро атома- (Н + П) К1 + П К2

Ядро атома состоит в основном из протонов, поэтому оно приобретает достаточно большой размер поля; электроны, входящие в атом, оказываются в его поле, в трёх возможных зонах действия сил Fо : +F1о -F2о, +F3о -F4о, +F5о -F6о. Из зоны +F1о - F2o электроны могут легко покинуть атом - свободные электроны. Плотность частиц поля увеличивается по мере приближения к ядру, вследствие этого размеры полей электронов пропорциональны расстоянию от ядра. Электроны не оказывают давление на ядро, но частично рассеивают его поле. Если в какой-либо стороне ядра окажется большее количество электронов, которые больше рассеют его поле, то ядро будет испытывать давление в сторону большего количества электронов. В зонах возможно только определённое количество электронов, подобно тому, как на поверхности большого шара можно разместить шары меньшего размера. Атом приобретает электроны до уравновешивания составляющих волн ~рм+ и ~рм-, при этом возможно для полного уравновешивания необходимо дополнительно к имеющимся только половина или какая-то часть электрона, но таковых нет. Поэтому атом оказывается с некоторым недобором или перебором электронов. В таких случаях атом излучает в окружающее Пространство волны ~рм± с преимуществом ~рм- или ~рм+. Количество электронов в атоме может быть не равным количеству протонов в ядре.

Свет - это волны

Атомы постоянно возбуждают волны ~рм± в процессе дыхания. Однако, в нормальном состоянии окружающие нас предметы не излучают свет. Следовательно, волны дыхания атомов не воспринимаются нашим зрением, высока их частота. Свет излучают вещества в сильно разогретом состоянии; в них всегда имеются свободные электроны. По мере увеличения температуры повышается скорость движения как атомов, так и свободных электронов; при этом возможно столкновение электрона с атомом и вход в него. Свободный электрон может войти в атом только синхронно в соответствии с дыханием атома, то есть, двигаясь, как и электроны самого атома в направлении к ядру. При этом от атома идёт отливная волна ~рм+, которая создаёт давление Fв в электроне в сторону источника волн, см. рис.12.2а. Свободный элек-трон (далее СЭ) должен иметь большую скорость движения, чем электроны атома, ибо ему нужно пройти большее расстояние для синхронного входа. Вход СЭ в атом сопрвождается дополнительным вытеснением поля ядра - увеличением силы отливной волны ~рм+, что приводит к увеличению скорости движения электронов атома до величины V1. После отражения электронов СЭ, имея большую скорость, но меньшую, чем до входа, покинет атом. Уход СЭ из атома приводит к ослаблению приливной волны ~рм+, что уменьшит V1, но не поностью, так как электроны атома, приобревши большую скорость, удаляются на большее расстояние от ядра, усиливая этим приливную волну ~рм+, которая создает силу Fв в электронах в сторону от ядра атома. Итак, степень увеличения скорости движения электронов атома зависит от степени вытеснения поля ядра входящим в атом СЭ, которая определяется соотношением


Страница: