Репликация, сохранение и модификация генома
Рефераты >> Биология >> Репликация, сохранение и модификация генома

Структуры Холлидея могут переходить в рекомбинантные двойные спирали путем внесения разрыва и воссоединения цепей двумя альтернативными способами. Один способ состоит в разрезании и воссоединении перекрещивающихся цепей. Два реципрокных продукта л и м могут образоваться, если разрыв и последующее воссоединение цепей произойдут в точке перекреста в структурах е и д или по линии пересечения четырех цепей в изомерной структуре Холлидея и. Размер обменивающихся фрагментов зависит от расстояния, на которое произошла миграция ветви до акта рекомбинации. Альтернативные продукты н и о образуются в том случае, если структура Холлидея з переходит в результате разрыва в к.

В основе рекомбинации данного типа лежит гомологичное спаривание цепей, принадлежащих двум разным спиралям ДНК, поэтому скорее всего она произойдет в том месте, где такое спаривание возможно a priori и где гомологичность последовательностей достаточно велика, чтобы могла произойти миграция ветви в рамках структуры со скрестившимися цепями. Отсюда можно понять, почему общая, или гомологичная, рекомбинация происходит также между двумя повторами в пределах одной молекулы ДНК или между аллельными и неаллельными элементами одной и той же последовательности в двух разных хромосомах.

В ходе миграции ветви при спаривании цепей, принадлежащих разным спиралям, образуются гетеродуплексы. В таких гетеродуплексах в пределах сегмента между сайтом начала образования структуры Холлидея и сайтом кроссинговера может содержаться по одному или более ошибочно спаренных оснований. Они удаляются так же, как любые модифицированные основания при репарации ДНК. Однако, поскольку удалено может быть любое из ошибочно спаренных оснований, в обеих рекомбинантных спиралях в данном сайте могут оказаться одинаковые пары оснований, т.е. рекомбинация для этого сайта окажется нереципрокной. Таким образом, каждая из рекомбинантных спиралей может быть похожа на любой из начальных дуплексов в тех позициях, где исходно они различались.

Общая рекомбинация с образованием двухцепочечного разрыва. Альтернативный механизм общей рекомбинации включает образование двухцепочечного разрыва в одном из дуплексов-партнеров. Далее с помощью экзонуклеаз в месте разрыва образуется брешь. При спаривании 3'-одноцепочечного конца бреши с комплементарной цепью интактной спирали в последней образуется петля. Размер этой петли увеличивается по мере того, как ДНК-полимераза наращивает 3'-конец "вклинившейся" цепи. В итоге другой одноцепочечный конец бреши спаривается с комплементарной последовательностью в перемещающейся петле. В результате такого спаривания образуется система "праймер-матрица", и ДНК-полимераза синтезирует недостающую цепь, заполняя брешь. Лигирование двух растущих концов с исходными цепями приводит к образованию двойной структуры Холлидея. Миграция ветви в одном или обоих перекрестах передвигает оба места сцепления в любом направлении, при этом в участках, фланкирующих брешь, могут возникать ошибки. Разделение таких структур может идти двумя способами - с перекрестом и без него, с образованием четырех дуплексов.

Необходимо отметить некоторые особенности этого механизма. Образование ошибочных пар в районах, фланкирующих брешь, обусловливает получение как реципрокных, так и нереципрокных рекомбинаций между генетическими маркерами. Если двухцепочечный разрыв происходит вблизи участка, где между спиралями имеются различия, то рекомбинанты унаследуют нуклеотидную последовательность партнера, у которого разрыва не происходило. Этот механизм объясняет многие случаи генной конверсии, особенно те, в которых протяженная последовательность одного дуплекса замещается соответствующей, но отличающейся последовательностью другого дуплекса.

Нереципрокная общая рекомбинация используется и при репарации некоторых повреждений ДНК. Например, если тиминовые димеры не были удалены из УФ-облученной ДНК до того, как к ним подошла репликативная вилка, то синтез комплементарной цепи в этом участке не может быть завершен. Поскольку тиминовые димеры, находящиеся напротив бреши, не могут быть выщеплены, остается один путь для спасения хроматиды - использовать генетическую информацию гомологичной сестринской хроматиды и заполнить брешь. Для этого применяется такой же механизм, как для репарации брешей.

в. Ферменты, участвующие в общей рекомбинации

В общей рекомбинации участвуют два специфических фермента и еще несколько ферментов, катализирующих также процессы репликации и репарации ДНК. Энзимология общей рекомбинации изучена только для некоторых прокариотических организмов, в частности E. coli и ее фагов. Один из специфических ферментов, необходимых для успешной гомологичной рекомбинации, называется recA-белком. Он катализирует обмен одиночными цепями, используя энергию гидролиза АТР до ADP и неорганического фосфата. RecA-зависимое внедрение одноцепочечных ДНК в дуплекс - первый этап рекомбинационного процесса в рамках обеих схем Холлидея и механизма с образованием двухцепочечных разрывов. Второй фермент, состоящий из трех отдельных субъединиц и поэтому называемый recBCD-нуклеазой, обладает эндо - и экзонуклеазной, а также геликазной активностями. Механизм его действия до конца не установлен, однако известно, что recBCD-нуклеаза индуцирует разрывы в дуплексной ДНК и благодаря присущей ей геликазной активности вместе с recA инициирует рекомбинационный процесс. Идентифицирован также фермент, разрезающий узлы в структурах Холлидея; при его участии образуются липкие концы, соединяемые лигазой.

В общей рекомбинации участвуют также геликазы и белки, связывающиеся с одноцепочечной ДНК; оба они необходимы для обеспечения процесса миграции ветви. Как известно, перемещению цепей во время миграции ветви способствует Pol I, а в воссоединении разорванных цепей участвует ДНК-лигаза. Для снятия топологических ограничений при раскручивании спирали и для распутывания перекрученных структур, по-видимому, нужны топоизомераза типа I и, возможно, гираза.

г. Сайт-специфическая рекомбинация

Сайт-специфическая рекомбинация происходит между специфическими сегментами дуплексов ДНК, не имеющими протяженных гомологичных участков. Характерным примером такой рекомбинации служит интеграция кольцевой ДНК фага X с хромосомой Е. coli и ее обратное выщепление. Несмотря на то что эти рекомбинационные события также включают разрыв и воссоединение двух спиральных сегментов ДНК, их механизм абсолютно отличен от механизма общей рекомбинации. В этом случае рекомбинация происходит в пределах специфической нуклеотидной последовательности ДНК фага X и уникальной последовательности ДНК Е. coli. Нуклеотидные последовательности attP - и attВ-сайтов совершенно различны, хотя имеют общее ядро протяженностью в 15 нуклеотидных пар. AttP простирается на 150 нуклеотидов влево и на 75 нуклеотидов вправо от общего ядра, a attB - это сегмент длиной всего около 25 нуклеотидов, включая и ядро. Рекомбинационные события, происходящие как при интеграции, так и при исключении ДНК фага X из хромосомы Е. coli.


Страница: