Самоорганизация материи
Рефераты >> Биология >> Самоорганизация материи

Тогда можно сказать, что суждения "теплота есть деградированная энергия", "теплота неспособна полностью превращаться в другие формы энергии", есть суждения понятия. Такие суждения нельзя опровергнуть, просто сославшись на какие-то факты. Их можно опровергнуть только одним способом, показав, что сомнительные, положения о закономерностях преобразования теплоты в другие формы движения из известных фактов не следуют, что при получении такого рода утверждений были допущены ошибки.

Для определения этих ошибок, необходимо рассмотреть рассуждения, в которых появляются заключения о "второсортности" теплоты как формы энергии, о невозможности полного превращения теплоты в другие формы движения и т. п.

5. Об ограничениях на преобразования теплоты

Ограничения, которые второй закон термодинамики накладывает на преобразования теплоты (тепловой энергии) в другие виды энергии, рассматриваются во всех курсах термодинамики. Эти ограничения сжато и ясно рассмотрены в статье "Второй закон термодинамики и энергетика" 1. Там сказано: "Коэффициент полезного действия тепловых электростанций не превышает 40%. Еще ниже к. п. д. атомных электростанций…"

Чем же объяснить столь низкий к. п. д. современных электростанций и каковы возможности его повышения? …

Схема любой электростанции предусматривает цепь последовательных преобразований энергии. Так, на ТЭС в процессе сжигания топлива химическая энергия превращается в тепловую. Далее тепловая энергия преобразуется в механическую, а последняя — в электрическую. На АЭС ядерная энергия также сначала преобразуется в тепловую и лишь затем в механическую и далее в электрическую… Объективные закономерности, отражающие особые свойства тепловой энергии, нашли свое отражение во втором законе термодинамики. Именно этот закон накладывает определенные ограничения на процессы преобразования тепловой энергии и в конечном итоге обусловливает относительно низкий к. п. д. электростанций.

Рассматривая процесс превращения теплоты (тепловой энергии) в механическое движение (в работу), необходимо сделать заключение об ошибочности следующих положений, которые часто встречаются в литературе:

— теплота превращается в работу только при наличии двух тел с различной температурой (для получения работы из теплоты нужен не только источник теплоты (нагреватель), но и холодильник);

— теплота не может полностью превратиться в работу;

— необходимым условием превращения теплоты в работу является переход части теплоты к холодильнику.

Все эти ограничения касаются преобразования теплоты (тепловой энергии) в работу (механическую энергию) в тепловых двигателях, в которых осуществляются круговые процессы (циклические изменения состояния рабочего тела). Если преобразование тепловой энергии в механическую происходит не в круговом процессе, все названные ограничения недействительны. Имея в виду то обстоятельство, что на основании особенностей превращения теплоты в другие формы энергии делали вывод о грядущей тепловой смерти Вселенной, заметим, что в природе преобразование тепловой энергии в другие формы энергии происходит не в тепловых двигателях и не в круговых процессах. Названные ограничения на преобразование тепловой энергии недействительны для природных процессов. Помня о существовании названных ограничений на превращение теплоты в другие формы движения и забывая о том, что они касаются круговых процессов, Можно найти в литературе утверждения некоторых исследователей примерно в такой форме: "все виды энергии легко превращаются в тепловую, обратный же процесс связан с определенными трудностями и требует дополнительной затраты энергии".

Кстати, К. Э. Циолковский отмечал: "Но и последняя (т. е. механическая работа) никогда на практике целиком не переходит в одно тепло, одно электричество, свет и проч. Возьмем, например, механическое трение. Тут кроме тепла обязательно получается электричество; может, конечно, получиться и свет"1.

Однако среди положений, огранивающих превращение теплоты в другие формы движения, есть такое, которое выглядит более обоснованным и специфическим для теплоты. Это теорема Карно.

Следует ли из теоремы Карно заключение о невозможности полного преобразования теплоты в другие виды энергии?

Эффективность преобразования энергии количественно характеризуется величиной коэффициента полезного действия (КПД). "Коэффициент полезного действия (кпд) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением η полезно использованной энергии WПОЛ к суммарному количеству энергии WСУМ, полученному системой: η = WПОЛ / WСУМ. КПД — величина безразмерная… Из-за неизбежных потерь энергии на трение, нагревание окружающих тел и т.п. всегда η <1 ."2. Величина КПД меньше единицы из-за потерь на трение, нагревание и т. п.; если бы такого рода потерь не было, КПД равнялся бы 1. В случае же преобразования тепла в механическое движение, которое происходит в тепловых двигателях, КПД не может достигать 1 даже в идеальном случае, когда нет трения. "Для всех идеальных двигателей, кроме тепловых, КПД равен единице. А вот для тепловых двигателей он всегда меньше единицы и зависит от температуры источника теплоты и окружающей среды"3 .

В идеальном тепловом двигателе, преобразующем теплоту в механическую энергию нет побочных процессов преобразования энергии. КПД идеального теплового двигателя, в отличие от КПД названных выше преобразователей, меньше единицы потому, что при определении КПД теплового двигателя WСУМ означает не теплоту, преобразованную в двигателе в иные формы, а величину другого рода — теплоту, подведенную к двигателю, аналогом которой является энергия излучения, упавшего на приемник в случае преобразования излучения. КПД теплового двигателя можно сравнивать с величиной интегральной чувствительности К приемника излучения, которая пропорциональна отношению полезной формы энергии к энергии, упавшей на приемник. Если интегральную чувствительности приемника излучения разделить на коэффициент пропорциональности с, получим величину, подобную КПД теплового двигателя.

В КПД (по его определению) должны находить отражение потери энергии, обусловленные эффектами, которые возникают в ходе процесса, совершающегося в соответствии с назначением устройства. Эффекты эти, сопутствующие основному процессу, совершенно чужеродны по отношению к нему и никак не связаны с принципом действия устройства. Теоретическая идеальная модель рабочего устройства совершенно свободна от такого рода процессов и по определению понятия ее КПД следует придать значение, равное единице. Отклонение КПД реального устройства от единицы характеризует различие между практически достигнутой эффективностью и принципиально возможной.

Таким образом, поскольку КПД тепловых двигателей и КПД ряда других преобразователей энергии (например, электродвигателей, ГЭС, источников излучения) характеризуют соответствующие преобразователи в разных отношениях, то сопоставление тепловых двигателей с другими преобразователями энергии по величине КПД логически некорректно.


Страница: