Состояние глутатионового звена антиоксидантной системы крови практически здоровых людей с лор-паталогиями, проживающих в различных районах города Красноярска
Рефераты >> Биология >> Состояние глутатионового звена антиоксидантной системы крови практически здоровых людей с лор-паталогиями, проживающих в различных районах города Красноярска

Как известно, человек подвержен экологическому влиянию не только в широком смысле понимания этого термина как окружающей человека среды, но и непосредственно во время его производственно - профессиональной деятельности. Трудовая деятельность человека не только ухудшает качество среды, но и обеспечивает условия труда, которые, являясь существенным фактором части окружающей среды (производственной среды), зачастую оказывают негативное влияние на работающего человека [Haglof, 2003]. Абсолютные величины предельно допустимых концентраций (ПДК) одних и тех же веществ в воздухе рабочей зоны от нескольких десятков до нескольких тысяч раз выше среднесуточных ПДК для атмосферы [Кучма, 2002]. Поэтому суммарная нагрузка вредными веществами на рабочего во столько же выше по сравнению с нагрузкой на население в целом. Наиболее распространенным профессиональным заболеванием рабочих алюминиевого производства является хроническая фтористая интоксикация – профессиональный флюороз, который составляет 70 % всех профессиональных заболеваний в данной области [Коцнельсон с соавт., 2000]. Обязательным проявлением профессионального флюороза является не только остеосклероз, но и дегенеративно-дистрофические изменения опорно-двигательного аппарата по существу возрастного характера, что развиваются они намного раньше и носят не только двухсторонний, но и симметричный характер. Явно опережающей хронологические сроки наступление кардинального признака старения (вероятности смерти по мере взросления) является и демографическая ситуация. Так продолжительность жизни рабочих алюминиевого завода составляет около 44 лет. Сроки развития профессионально флюороза зависят в большей степени от возраста начала работы в контакте с фтористыми соединениями и мышечных нагрузок [Гичев, 2002].

Изучение закономерностей формирования здоровья населения, проживающего в зоне влияния выбросов алюминиевых производств, остается актуальной гигиенической задачей. Как известно, основными вредными факторами алюминиевого производства является фтор, его соли и фтористый водород. По данным ряда авторов уровень загрязнения атмосферного воздуха фтористыми соединениями в зоне влияния выбросов алюминиевого завода превышает ПДК в 1,6-2,1 раза. Фтористые соединения так же обнаруживаются в воде и почве и превышают контрольные в 5 раз [Иванова с соавт., 2001]. Токсичные соединения фтора в значительном количестве поступают через дыхательные пути, с продуктами питания, питьевой водой. Имеется ряд исследований о влиянии фтористых соединений на состояние перекисного окисления липидов мембран клеток и антиоксидантной защиты [Cavalca, et al., 2001]. Длительное воздействие на организм токсичных соединений фтора, фтористоводородной кислоты приводит к формированию выраженных функционально-структурных нарушений, к угнетению биоэнергетического обмена в эритроцитах, белково-образовательной функции печени, усилению пролиферативно-клеточной реакции. Высокая реакционность фтора делает возможным его проникновение через защитные барьеры организма, нарушая целостность мембран, усиливая процессы липопероксидации. Результаты ряда исследований свидетельствую о том, что фтор и его соединения вызывают системное поражение организма, которое проявляется рядом специфических заболеваний [Кацнельсон с соавт., 2000].

В литературе приводятся данные, что для интоксикации фтором характерно разнообразное воздействие на обменные процессы. Этот элемент обладает высоким сродством к некоторым элементам, например, кальцию и магнию, с которыми он комплексуется в клетке [Мамырев, Богатова, 2002]. Фтор способен выступать в качестве регулятора ферментативной активности в клетке. Он обладает ингибирующим действием на металлопротеины. Это, по-видимому, обусловлено тем, что он представляет собой один из наиболее “жестких” лигандов, то есть, способен образовывать прочные комплексы с ионами “жестких” металлов, к которым относятся почти все металлы в биологических системах [Генкин, Глотов, Ждахина, 1983]. В силу этого обстоятельства при увеличении концентрации фтор способен “вклиниваться” в структуру биокоординационных соединений и замешать некоторые ионы-лиганды (например, гидроксил-ионы), в результате чего изменяется конформация соединения, что и приводит к “ухудшению” взаимодействия фермента с субстратом, то есть к ингибированию ферментативной активности [Ройт,1991]. Наибольшей прочностью отличается соединение фтора с ионами магния, в силу чего большинство Мg2+-зависимых ферментных систем по своей чувствительности к ингибирующему воздействию фтора в несколько раз превосходят ферменты, активируемые другими ионами, например Мn2+.Существуют данные о влиянии фтора на активность некоторых энзимов, например липаз, через их лабильный компонент – кофермент [Разумов, 1997]. Из литературных источников известно, что фтор способен оказывать ингибирующее влияние на ферменты цикла трикарбоновых кислот и цепи переноса электронов: НАДН- зависимые дегидрогеназы, цитохромоксидазу, сукцинатдегидрогеназу, a-кетоглутаратдеги-дрогеназу. Наибольшей чувствительностью из них к фтору обладает сукцинатдегидрогеназа [Abiaka, 2000].

1.2. Активные формы кислорода: свойства и механизмы образования

Обязательным атрибутом нормальной аэробной жизни является генерация АФК – прооксидантов. Функционирование и развитие клеток не могло быть возможным без существования защитных систем, к которым относиться специализированные ферментативные и неферментативные актиоксиданты [Меньщикова c соавт, 2006]. Постоянное образование прооксидантов уравновешенно их дезактивацией антиоксидантами, поэтому для поддержания гомеостаза необходимо непрерывная генерация антиоксидантной способности. Отсутствие или сбой этой непрерывности приводят к развитию окислительного стресса, к возникновению и накоплении окислительных повреждений, что сопровождает ряд физиологических процессов – таких как воспаление, реперфузионное поражение тканей, бронхо-легочное заболевание, старение и др.

В живых организмах существует два разных источника АФК: радикальные окислительные реакции и металопротеиновые ферментативные системы. В обоих случаях молекулярный кислород выступает акцептором электронов. Наличие у молекулярного кислорода двух неспаренных электронов существенно ограничивает его реакционную способность. В процессе эволюции у живых организмов выработались специальные ферментативные системы, которые восстанавливают молекулярный кислород, перенося на него один, два или четыре электрона. Главные ферменты, которые осуществляют метаболизм кислорода в организме млекопитающих – оксидазы и оксигеназы. В активных центрах этих ферментов кислород превращается в этих продуктах и не выходит в окружающую среду, но при этом они не подвергают опасности органические молекулы, а опасными являются активные формы кислорода, которые образуются как побочные вещества в ходе этих превращений [Меньщикова c соавт, 2006].

Главные АФК: супероксидный радикал , перекись водорода , гидроксильный радикал , синглетный кислород , гипогалоиды алкоксильный радикал и перекисный радикал .


Страница: