Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли
Рефераты >> Радиоэлектроника >> Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли

На рис. 10 (2), представлены вертикальные профили скорости потери энергии первоначально изотропных моноэнергетических потоков протонов. Горизонтальное рассеяние, вызванное процессами перезарядки, в вычислениях не учитывалось. Вычисления основаны на коэффициентах поглощения, приведенных на рис. 11 (2).

Высота максимальной потери энергии уменьшается от ~ 200 км до ~ 90 км, в то время как энергия протонов возрастает от 1 до 1000 кэВ. Новые модели атмосферы, возможно, каким-то образом уменьшать эти высоты, но маловероятно, чтобы в результате этого профили сместились более чем на 5 км.

Вследствие существования градиента плотности в атмосфере «толщина» профилей потери энергии уменьшается с возрастанием энергии протонов, и к тому же максимум в профиле резко возрастает. Следовательно, при изменении энергии протонов от 1 до 1000 кэВ максимальные потери энергии увеличиваются в 60 000 раз.

(Электроны и протоны по-разному ведут себя, проникая в ионосферу. Электроны, после небольшого числа столкновений, «забывают» о своем первоначальном направлении. Протоны же, в процессе перезарядки, проникают гораздо глубже, так как нейтральный атом не испытывает кулоновского рассеяния.)

Рис. 10. Профили скорости потерь энергии протонов с начальной энергией Wо, кэВ.

Рис. 11. Скорость потери энергии для протонов в воздухе в зависимости от энергии.

3.Изучение гидродинамических методов исследований.

(В этой главе будут рассмотрены различные типы взаимодействий волн с частицами.)

Рассмотрим другой канал связи – волновой, осуществляющий передачу электрических полей и продольных токов.

Волновой канал настолько тесно связывает элементы магнитосферно-ионосферной системы, что можно говорить о единой электрической цепи, в которой почти любой процесс является совместным продуктом магнитосферы и ионосферы. Некоторые из высыпаний, в частности дискретные дуги полярных сияний, управляются из ионосферы. Обратная связь осуществляется посредством волнового канала. Схема обратной связи выглядит следующим образом. Вторгающийся поток меняет проводимость ионосферы. В присутствии внешнего электрического поля область меняющейся проводимости генерирует гидромагнитную волну, направленную геомагнитным полем. Распространяясь в магнитосферу, гидромагнитная волна взаимодействует с частицами, заставляя их при некоторых условиях высыпаться, (но пока не известен конкретный механизм взаимодействия гидромагнитной волны с частицами). Можно предложить два варианта передачи этой энергии частицам. В первом варианте волна меняет магнитное поле в силовой трубке, модулируя поток энергичных частиц. Во втором – происходит ускорение «холодных» частиц в продольном электрическом поле волны.

3.1. Модуляция потоков энергичных частиц гидромагнитными волнами.

Предположим, что существует фоновое высыпание частиц, обусловленное, например, диффузией в конус потерь. Найдем глубину модуляции высыпающегося потока в зависимости от амплитуды геомагнитных пульсаций, которые можно связывать со стоячей альвеновской волной, захваченной между магнитосопряженными участками ионосфер различных полушарий. Известно, что направляемые альвеновские волны не сопровождаются сжатием магнитного поля. Однако, в неоднородном магнитном поле каждая колеблющаяся магнитная силовая линия будет испытывать субстанциональные сжатия и разрежения. Магнитное поле в такой колеблющейся трубке меняется по закону:

, (4)

где - колебательная скорость трубки. Плазма, вмороженная в трубку, колеблющуюся в меридиальной плоскости, испытывает периодическое нагревание и охлаждение, что приводит к вариациям частиц в трубке с периодом ее поперечных колебаний. Вариации потока частиц на уровне ионосферы существенно зависят от характера изменений питч-углового распределения частиц. Рассмотрим четыре случая, отличающихся характером изменения функции распределения, а также энергией частиц. Вначале найдем связь глубины модуляции с амплитудой колебаний в экваториальной плоскости , а затем с амплитудой пульсаций на поверхности Земли.

3.1.1. Случай быстрой изотропизации. Относительное изменение потока может быть найдено из теоремы Лиувилля и определяется выражением:

. (5)

где - поток частиц в единице телесного угла и в единичном интервале энергий , - возмущенные величины.

Поперечные радиальные колебания трубки сопровождаются изменением ее объема. Предполагая процесс адиабатическим, из уравнения адиабаты находим связь между изменением энергии частиц и изменениями объема:

. (6)

Рассмотрим первую гармонику колебаний. Считаем для простоты, что объем трубки пропорционален ( - геоцентрическое рассеяние до трубы в экваториальной плоскости в радиусах Земли). Имеем:

. (7)

Подставляя (7.3) и (7.4) в (7.2), получаем для зависимости

. (8)

Последнее равенство написано для , .

3.1.2. Случай сохранения адиабатических инвариантов. Этот случай, вероятно, реализуется в спокойное время вдали от ярких форм сияний. Высыпание частиц в ионосферу связано при этом с сокращением магнитных силовых линий в процессе стационарной конвекции магнитосферной плазмы. Хотя с приближением магнитной силовой линии к Земле питч-углы заряженных частиц увеличиваются, конус потерь увеличивается еще быстрее. Высыпающийся поток примерно равен , где и - концентрация частиц и скорость их радиального дрейфа в экваториальной плоскости. Модуляция потока имеет вид:

. (9)

Где - возмущение скорости, связанное с гидромагнитной волной; - частота волны; - радиус Земли. Полагая частоту равной частоте резонансных колебаний магнитной трубки (), получаем:


Страница: