Физиологические основы боли
Рефераты >> Биология >> Физиологические основы боли

По афферентным путям в ретикулярную формацию проводится возбуждение от спинного мозга, мозжечка, таламуса, гипоталамуса, базальных ганглиев и коры больших полушарий, а также от различных рецепторов и анализаторов. Афферентные волокна образуют огромное число синапсов на телах и дендритах ретикулярных нейронов, за счет чего обеспечивается конвергенция возбуждений различной модальности на отдельных ретикулярных нейронах. Афферентные связи ретикулярной формации в зависимости от места их возникновения можно подразделить на несколько групп:

1. Спиноретикулярные пути - волокна, восходящие от спинного мозга.

2. Церебеллоретикулярные пути - волокна, идущие от мозжечка.

3. Волокна, начинающиеся в высших структурах мозга (коре, базальных ганглиях и промежуточном мозге).

4. Эфферентные волокна из других структур ствола мозга (четверохолмия, ядер черепно-мозговых нервов).

Влияние ретикулярной формации на различные отделы центральной нервной системы осуществляется благодаря ее богатым эфферентным связям. Эфферентные связи ретикулярной формации, так же как и афферентные, можно подразделить на четыре группы:

1. Нисходящие ретикулоспинальные связи, идущие к спинному мозгу.

2. Восходящие ретикулярные связи, направляющиеся к коре больших полушарий и ростральным структурам головного мозга.

3. Ретикулоцеребеллярные связи.

4. Волокна, оканчивающиеся в других структурах мозга.

Таким образом, ретикулярная формация имеет обширные функциональные взаимоотношения с различными структурами центральной нервной системы.

Таламус

Таламус рассматривают как один из важнейших отделов промежуточного мозга, так как он является главным коллектором на пути информации от всех афферентных систем в кору больших полушарий. Он имеет тесные связи с ретикулярной формацией ствола мозга, мозжечком, гипоталамусом и, что особенно важно, для процессов переработки на таламическом уровне сюда подходят многочисленные волокна от различных отделов коры больших полушарий. Таламус состоит из большого числа ядер, представляющих собой скопление тел нейронов, аксоны которых направляются либо в кору больших полушарий, либо в другие таламические ядра. Наиболее распространенной классификацией таламических ядер является номенклатура Уокера. По этой классификации ядра таламуса можно разделить на несколько групп: переднюю группу ядер, ядра средней линии, медиальную группу ядер, вентро-нейтральную и заднюю группу ядер. Каждая из этих основных групп ядер играет определенную роль в процессах распределения периферического потока афферентных посылок, а также в процессах, связанных с последующими этапами переработки информации.

Гипоталамус

Гипоталамус представляет собой комплекс структур, расположенных книзу от таламуса. В этот комплекс входят серый бугор, мамиллярные тела и серое вещество, образующее дно и стенки третьего желудочка.

Большинство исследователей выделяют 32 пары ядер, которые классифицируют по областям гипоталамуса, а именно:

1. Преоптическая область.

2. Передняя группа ядер.

3. Средняя группа ядер.

4. Наружная группа ядер

5. Задняя группа ядер.

Гипоталамус имеет прямые эфферентные связи с корой больших полушарий, мозжечком, ретикулярной формацией мозга, в том числе и с парасимпатическими ядрами продолговатого мозга, симпатическими центрами боковых рогов спинного мозга, таламусом, гипофизом. Каждый нейрон некоторых ядер гипоталамуса получает по 2 - 3 и более капилляров, которые контактируют с телом нейрона. Кровеносные сосуды гипоталамуса отличаются высокой проницаемостью для крупных молекул, что способствует легкому проникновению из кровеносного русла различных химических и гормональных продуктов, что обеспечивает постоянное поступление информации о гуморальных и гормональных изменениях внутренней среды организма. Этот механизм необходим для автоматической регуляции различными ядрами гипоталамуса, постоянства внутренней среды организма. Ряд ядер гипоталамуса близко соприкасается с ликвором третьего желудочка, что также способствует получению химической информации и по этим путям.

Гипоталамус контролируется высшими отделами центральной нервной системы (корой больших полушарий, подкорковыми ядрами, мозжечком и другими структурами), с которой имеет прямые и опосредованные связи.

Лимбическая система

Лимбической системой называют совокупность нервных структур и их связей, расположенных в медио-базальной части больших полушарий. Центральными звеньями лимбической системой являются миндалевидный комплекс, гиппокамп и поясная извилина. Некоторые исследователи относят к лимбической системе обонятельную луковицу, обонятельный тракт, обонятельный бугорок, лобно-теменную кору больших полушарий, перегородку, передние ядра таламуса, гипоталамус, ретикулярную формацию и другие образования.

Значение физиологических данных

Физиологические данные говорят о том, что рецепторы, волокна и проводящие пути центральной нервной системы, участвующие в механизмах боли, приспособлены генерировать и передавать информацию в виде паттернов импульсов, а не в виде модально-специфических импульсов. Повреждающее раздражение возбуждает множество проводящих систем, волокна которых конвергируют и дивергируют по нескольку раз, так что паттерны импульсов могут подвергаться изменениям на каждом синаптическом уровне. Нервные импульсы, передаваемые по тонким и толстым волокнам, которые конвергируют на клетках задних рогов спинного мозга, модулируются активностью желатинозной субстанции. Таким же образом конвергенция волокон на клетках ретикулярной формации позволяет осуществлять значительную суммацию и взаимодействие входов от расположенных - далеко друг от друга областей тела. Имеет место и дивергенция: волокна разбегаются в разных направлениях от задних рогов спинного мозга и ретикулярной формации и проецируют информацию в различные области нервной системы, имеющие специфические функции. Одна из этих функций - это способность выбирать и извлекать информацию определенного типа из временных паттернов, передаваемых приходящими волокнами. Теперь также очевидно, что клетки центральной нервной системы контролируют вход в течение длительного времени. Послеразряды и другие виды долговременной нейронной активности, вызванной сильными раздражениями, могут продолжаться длительное время после прекращения раздражения и могут играть особенно важную роль в механизмах боли.

Конвергенция и дивергенция, суммация и дискриминация паттернов - все это происходит в динамически меняющейся нервной системе. Стимулы воздействуют на кожные сенсорные поля, чувствительность которых все время меняется. Более того, волокна, нисходящие от головного мозга, постоянно модулируют вход, облегчая передачу одних входных паттернов и тормозя передачу других. Широко распространяющееся влияние желатинозной субстанции и ретикулярной формации, которые получают входы практически от всего тела, может видоизменять передачу информации почти на любом синаптическом уровне соматосенсорной проекционной системы. Эти восходящие и нисходящие взаимодействия создают картину динамических процессов, при которых входы воздействуют на нервную систему, находящуюся в постоянно активном состоянии и уже являющуюся хранилищем прошлого опыта индивида, его ожиданий и систем оценки. В этой концепции заложен важный смысл: она означает, что входные паттерны импульсов, вызванные повреждением, можно модулировать с помощью других сенсорных входов или нисходящих влияний, которые тем самым определяют качество и интенсивность испытываемой вслед за этим боли.


Страница: