Фотосинтез водорослей
Рефераты >> Биология >> Фотосинтез водорослей

Фотосинтез. Преобразование энергии света в химическую энергию фотосинтеза у синезеленых водорослей, как и у других фотосинтезирующих организмов, осуществляющих расщепление воды и выделение кислорода, представляет собой сложный комплекс реакций. В первой реакции (фотофизической) происходит поглощение света пигментами и превращение его энергии в пигментных структурах, во второй (фотохимической) энергия электрона переносится в электрон-транспортной цепи фотосинтеза, а в третьей (биохимической) она используется для восстановления С02. Поскольку клетки синезеленых водорослей содержат большое число пигментов, то поглощение видимого света осуществляется в широком диапазоне (от 400 до 800 нм), большем, чем у других водорослей. Пигменты фотосинтетического аппарата организованы в две фотосистемы. Фотосистема I является главным местом превращения световой энергии в химическую, Она, как и фотосистема II, содержит хлорофилл а и каротиноиды. Однако хлорофилл а у синезеленых водорослей не является однородным пигментом. Фотосистема I представляет собой комплекс хлорофилла а и цитохрома f.

Согласно имеющимся в литературе данным, синий свет может служить индикатором относительно содержания двух фотосистем. В опытах с клетками Chlorella vulgaris, автотрофно выращенных на синем свете, содержание хлорофиллов и каротиноидов на 25—30 % выше, чем в водорослях, облучаемых красным светом Величина соотношения Ха/Хь при этом составляла 2,9 и 5,0 для водорослей, выращенных на синем и красном свете соответственно. Замена белого света, при котором соотношение Ха/Хь было равным 2,9, на красный приводит к увеличению через 20 ч этого параметра до 5,0. В таких клетках накапливалось до 80 % хлорофилла, в то время как в клетках, получающих после белого синий свет — 50 % хлорофилла Ь. Флуоресценция водорослей, получивших в ходе роста синий свет, на 30 % больше таковых растений, выращенных на красном свете. Учитывая, что хлорофилл b функционально связан с фотосистемой II, синий свет служит у Chlorela существенным фактором формирования данной фотосистемы и тем самым оптимального состава фотосинтетического аппарата.

В результате светового возбуждения, наступающего у фотосистемы II, вызываются реакции фотоокисления воды и переноса образовавшегося электрона в цепь поступательных переносчиков, что приводит к их восстановлению. Возбуждение же фотосистемы I приводит к окислению этих переносчиков и переброске электрона на молекулу НАДФ с последующим ее восстановлением.

Электрон, образующийся в результате фотовозбуждения как фотосистемы I, так и фотосистемы II, по пути своего следования отдает содержащуюся в нем энергию. Фотосистема II (коротковолновая, А=680), поглощая квант света, повышает энергию электрона от уровня окислительно-восстановительного потенциала воды, являющейся внешним донором электронов, до уровня с невысоким отрицательным потенциалом. Фотоактивация фотосистемы I (длинноволновая) приводит также к образованию электрона с высокой восстанавливающей способностью, который используется для восстановления ферредоксина или железофермента дегидрогеназы. Под действием красного света пигмент окисляет цитохром f и восстанавливает ферредоксин, который, окисляясь НАДФ-редуктазой, образует восстановленный НАДФ-Н— один из самых важных компонентов, образующих «восстановительную силу» за счет энергии света.

В свою очередь, цитохром f, отдавший электроны восстанавливается электронами, отданными фотосистемой II, т. е. объединяет обе системы. Между ними находится и пластоцианин — медьсодержащий белок, участвующий в транспорте электронов.

С фотосистемой II связаны пластохиноны — соединения с наименьшим окислительно-восстановительным потенциалом, участвующие в транспорте электронов. Важное место в этом транспорте отводится и цитохромам b, которых значительно больше, чем цитохрома. В частности, цитохромы b, содержащиеся в хлоропластах, располагаются после фотосистемы I.

Энергия электрона используется на образование макроэргической связи АТФ дважды. Одно из мест, где происходит фосфорилирование, связано с фотосистемой II. Находится оно, как полагают, между пластохинонами и цитохромом f. Второе место существует предположительно между акцептором фотосистемы I и НАДФ. Р. М. Бекина и М. В. Гусев показали, что на тилакоидных мембранах цианобактерий наряду с фотосистемой I фотосистема II способна восстанавливать 02 на уровне реакционный центр — первичный акцептор. Вместе с тем функционирование двух систем совместно или раздельно с 02 как акцептором электронов имеет неравную энергетическую эффективность. Обнаружено отклонение фотообмена 02 от нормы как при активации, так и при снижении поглощения 02, что оказывает одинаково тормозящее действие на фотосинтез. При введении в клетки органических кислот, обладающих способностью активировать поглощение 02 в фотосистеме II (яблочной, глиоксиловой, малоновой, щавелевой) фотосинтез снижался на 50—70 %. Тормозит фотосинтез и удаление выделяемой в среду перекиси водорода. При совместной инкубации синезеленых водорослей и хлоропластов высших растений с активным фотопоглощением 02, обогащающим среду Н202, также на 50—70 % ингибируется фотосинтез. Таким образом, из этих опытов вытекает необходимость поддержания определенного уровня восстановленных форм 02 для процесса фотосинтеза как начала общего метаболизма клетки на свету. Е. Л. Барский с соавт. нашли, что фотосинтетическое выделение 02 интактными клетками синезеленых водорослей зависит от поверхностного заряда мембран, регулирующего стыковку пластоцианина с реакционными центрами фотосистемы I. Лагфаза в выделении 02, очевидно, обусловлена трансмембранным перераспределением катионов в ответ на образование электрохимического потенциала Н+ при энергизации клеток освещением. Перераспределение катионов приводит к увеличению их концентрации в микроокружении пластоцианина и стимуляции выделения 02.

Исследования М. Кальвина показали, что главный путь ассимиляции С02 — циклический процесс, в который вводится С02 и из которого выходит углерод.

Э. Либберт разделяет этот процесс на три фазы: Фаза карбоксилирования С02, связываясь с рибулозодифосфатом, образует две молекулы фосфоглицерата при участии фермента рибулозодифосфат-карбоксилазы. В фазе восстановления фосфоглицерат при участии НАДФ-Н и АТФ восстанавливается до 3-фосфоглицеральдегидрида. Затем наступает фаза регенерации, когда каждая шестая молекула фосфоглицеральдегида выходит из цикла и из этого вещества образуется фруктозо-1,6-дифосфат, из него, в свою очередь, синтезируются глюкоза, сахароза, крахмал и т. п. Из остальных молекул фосфоглицеральдегида при участии новых молекул АТФ регенерируется рибулозодифосфат (5С3—3С5). В качестве промежуточных продуктов образуются различные фосфаты Сахаров (например, С4-эритрозо-С6-фруктозо-С7-седогептулозодифосфат). С окончанием этой фазы цикл замыкается. Процесс этот получил название «С3-пути», и он характерен для большинства растений.

М. Хетч и С. Слэк, а еще раньше Ю. С. Карпилов нашли, что у некоторых растений, преимущественно тропических и субтропических (сахарного тростника, кукурузы и др.), СО2 присоединяется к фосфоенолпировиноградной кислоте (ФЕП) при участии фосфоенолпируваткарбоксилазы:


Страница: