Аналогии и модели - один из методов обучения физики средней школы
Рефераты >> Педагогика >> Аналогии и модели - один из методов обучения физики средней школы

Какие методы научного познания можно отнести к столь привилегированной группе? Это, прежде всего, общефилософские методы познания, такие как анализ, синтез, моделирование и т. д. Остановимся более подробно на методе моделирования. Итак, для качественного усвоения знаний по физике школьникам необходимо в полной мере раскрыть суть метода моделирования, но если это общефилософские методы познания, не раскрываются ли они в достаточной степени на других школьных предметах? Все школьные предметы химия, природоведение, биология, русский язык и даже физкультура работают с моделями или со знаниями, полученными с помощью метода моделирования, но даже термин "модель" встречается более-менее часто только в биологии, да и там он употребляется не в научно-познавательном смысле, а в смысле демонстрационного увеличенного макета. Предмета "методы научного познания" в основной школьной программе, пока, не существует. Остается информатика. Авторских программ по информатике существует большое количество, и в некоторых из них проблеме моделирования уделяется действительно достойное внимание, и метод моделирования рассматривается в довольно большом объеме. Основным недостатком подобных программ является, пожалуй, то, что метод моделирования изучается в старших классах, обычно в десятом или даже одиннадцатом.

Подводя итоги, можно сделать следующий вывод: в курсе физики необходимо в достаточной мере изучать метод моделирования. При чем, желательно изучать методы моделирования начиная с первых занятий по физике и не выпускать далеко из рассмотрения на протяжении всей основной школы.

3. Классификации моделей и их значение в обучении физике

Модели давно играют одну из главных ролей в обучении физике, о моделях написано много научных работ, много ученых, преподавателей и учителей создавали и создают новые учебные модели, разработано много классификаций моделей. Рассмотрим некоторые классификации моделей, а так же попытаемся оценить их ценность для методики преподавания физики.

Существует множество классификаций моделей, отличающихся друг от друга признаками, положенными в основу классификации, перечислим некоторые из них.

Модели делятся:

• по способу познания: житейские, художественные, научно-технические;

• по отрасли знаний: биологические, экономические, исторические и т.д.;

• по области использования: учебные (наглядные пособия), опытные (модель самолета в турбодинамической трубе), научно-технические (ускорители элементарных частиц), игровые (экономические, военные), имитационные (многократное повторение опытов для оценки результатов воздействия реальной действительности на образец);

• по учету фактора времени: динамические и статистические.

По способу реализации и средствам моделирования существует довольно много классификаций, рассмотрим классификацию представленную в книге Каменецкого и Солодухина "Модели и аналогии в курсе физики средней школы". Модели делятся на: материальные (предметные) и идеальные (мысленные). В свою очередь материальные модели делятся на: физически подобные, пространственно-подобные и математически подобные, а идеальные модели делятся на: модели-представления и знаковые модели. К сожалению, в методике преподавания физики, можно встретить и другую классификацию моделей по способу реализации: физические и математические, которая является не полной даже в рамках преподавания физики. Так из этой классификации выпадают, например, химические уравнения и уравнения ядерных реакций.

Приведенные классификации представляют интерес для методики преподавания физики только в плане обучения учеников методу моделирования, и не представляют особого интереса при преподавании конкретных тем курса. Совсем иначе обстоит дело с классификацией, основанной на способах получения моделей. Модели можно разделить на модели, полученные путем предельного перехода, модели, полученные путем приписывания и теоретические конструкты.

С помощью предельного перехода можно получить модели непосредственно воспринимаемых явлений и объектов, путем рассмотрения целого ряда явлений или объектов обладающих интересующим свойством, например в порядке его возрастания, а затем сконструировать мысленный объект или явление, обладающим этим свойством в бесконечной мере, либо лишенным его. Таким образом, можно вводить понятия материальной точки или математического маятника.

Путем приписывания некоторых свойств объекту можно получить модели микрообъектов или микроявлений, не воспринимаемых непосредственно органами чувств. Таким образом, можно получить модели идеального или электронного газа. И, наконец, теоретические конструкты, такие как электрон или электромагнитное поле, они не могут быть получены путем приписывания, и лишь дальнейшее развитие науки может подтвердить правомерность их использования.

Из данной классификации можно получить конкретные методические рекомендации по введению моделей того или иного класса.

Для успешного введения модели непосредственно воспринимаемого макрообъекта или макроявления, необходимо реализовать наблюдение подобных объектов/явлений с различными степенями выраженности интересующих свойств. Для построения моделей микрообъектов и микроявлений полученных путем приписывания необходимо, в начале, на основе предыдущего опыта, путем абстрагирования отбросить несущественные стороны, а оставшиеся в поле рассмотрения свойства приписать модели. И, наконец, при введении теоретических конструктов, таких как электрон, квант или электромагнитное поле, существование которых, само по себе, необходимо доказывать, остается использовать исторический материал, показывающий, как эти понятия появились в истории науки.

4. Демонстрационная компьютерная модель "Электрический ток в металле"

В курсе "основы электродинамики" основной школы есть много важных для дальнейшего обучения и сложных для понимания учащихся тем, это и ЭДС индукции, и напряженность электрического поля, и электромагнитные колебания. Одной из таких тем является электрический ток в металлах, остановимся подробнее на этой теме.

Сложность темы заключается в том, что для ее качественного раскрытия необходимо использовать статистические понятия, с которыми школьники встречались только при изучении основ молекулярной физики и, следовательно, владеют им не в полной мере. В таком случае статические закономерности необходимо представлять через показ динамики процесса.

Каким образом можно на максимально высоком уровне объяснить данную тему? Используя только плакаты, иллюстрации из учебника и рисунки на доске тему можно качественно раскрыть только для учеников способных оперировать понятиями высокой степени абстракции. Для объяснения природы электрического тока в металлах можно использовать кинофильмы по этой теме, но в большинстве школ кинооборудование уже вышло из строя, да и сами киноленты частично испорчены. Остается рассмотреть два средства обучения, относящихся к новым информационным технологиям – это видеофильмы и компьютерные модели.


Страница: