Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы
Рефераты >> Педагогика >> Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы

Число всех подмножеств множества М равно +++ и равно числу всех последовательностей длины три из единиц и нулей. Число таких последовательностей нетрудно подсчитать: каждое из трех мест в последовательности может быть занято 1 или 0, то есть двумя способами, а все три места – по принципу умножения – 2×2×2=23 способами. Это число можно получить и по формуле подсчета числа размещений с повторением, таким образом, +++=23.

б) Проведите аналогичные рассуждения для множества из n элементов. Тогда какие изменения следует внести в таблицу? Сделайте вывод, результат запишите.

Занятие №9. Свойство сочетаний =+ и треугольник Паскаля.

I. Для изучения следующего свойства сочетаний предварительно составим трехэлементные подмножества множества М={а, б, в, г, д}. Затем выберем из множества М любой элемент, например, «а» и разобьем все подмножества на два класса: не содержащие «а» и содержащие «а».

I класс: {б, в, г}, {б, в, д}, {б, г, д}, {в, г, д}

II класс: {а, б, в}, {а, б, г}, {а, б, д}, {а, в, г},

{а, в, д}, {а, г, д}.

Первый класс состоит из всевозможных сочетаний без повторений по три элемента из следующих четырех: б, в, г, д. Таких сочетаний . Каждое подмножество второго класса состоит из элемента «а» и двух элементов, выбираемых из множества следующих элементов: б, в, г, д. Очевидно, число таких подмножеств равно .

Подмножества I и II классов исчерпывают все трехэлементные подмножества множества М, что означает:

=+.

Аналогичными рассуждениями получите равенство:

=+.

Убедитесь в справедливости последнего равенства, воспользовавшись формулой подсчета числа сочетаний без повторений.

II. Составим таблицу значений при различных значениях n и k. В таблицу 2 занесем значения =1, =1, =1, =1, =2, =1. Заполните остальные строки таблицы, используя свойство сочетаний.

Займемся изучением таблицы 2.

Первые и последние элементы любой строки равны 1, так как ==1. Это равенство будем считать верным и при n=0 (пустое множество своим единственным подмножеством имеет самое себя).

Любой другой элемент таблицы 2 согласно свойству сочетаний, на основании которого составлена таблица, равен сумме двух элементов предшествующей строки: стоящего непосредственно над ним и стоящего над ним слева.

Часто числа располагают в таблице иначе, так, что каждый элемент таблицы равен сумме двух чисел предшествующей строки, стоящих непосредственно над ним слева и справа. Тогда таблица принимает форму равнобедренного треугольника.

Исследованием свойств такой треугольной таблицы и применениями ее занимался выдающийся ученый Франции Блез Паскаль (1623 —1662). Поэтому рассматриваемую таблицу часто называют треугольником Паскаля. Хотя задолго до Паскаля этот треугольник встречался в работах итальянских и арабских математиков.

Отметим некоторые из свойств треугольника Паскаля.

1. Сумма чисел k-той строки равна 2k: ранее было доказано, что +++…+=2k.

Таблица 2

 

0

1

2

3

4

5

6

7

8

9

10

0

1

                   

1

1

1

                 

2

1

2

1

               

3

1

3

3

1

             

4

1

4

6

4

1

           

5

1

5

10

10

5

1

         

6

1

6

15

20

15

6

1

       

7

1

7

21

35

35

21

7

1

     

8

1

8

28

56

70

56

28

8

1

   

9

1

9

36

84

126

126

84

36

9

1

 

10

1

10

45

120

210

252

210

120

45

10

1


Страница: