Гипотезы о природе шаровой молнии
Рефераты >> Физика >> Гипотезы о природе шаровой молнии

Вокруг высокотемпературного канала молнии, как проводника с током, по всей длине создается поперечное магнитное поле, замкнутые силовые линии которого расположены концентрическими кругами с общим центром в середине канала. Это мощное поперечное круговое поле своим давлением удерживает плазму в центральном канале молнии, несмотря на высокую температуру и соответственно высокое давление внутри нее, то есть круговое поперечное магнитное поле несет в себе более половины энергии линейной молнии.

Здесь следует отметить, что это же мощное магнитное поле, пронизывая плотной сетью своих круговых силовых линий холодную плазму (1000 К) внешнего канала, очень своеобразно удерживает ее внутри себя. Ионы и электроны в холодной плазме движутся в сильном магнитном поле коллективно упорядочено. Это означает, что заряженные частицы, оказавшиеся в сильном магнитном поле и движущиеся поперек его силовых линий, под углом к ним, при этом вращаются вокруг силовых линий поля по так называемым ларморовским спиралям с постоянной скоростью до тех пор, пока не столкнутся с другими частицами или пока не исчезнет магнитное поле [1, стр. 149; 2, стр. 69]. Таким образом, вращающиеся вокруг силовых линий поля по ларморовским спиралям ионы и электроны одновременно движутся и вдоль силовых линий [3, стр. 536 .537]. Поскольку силовые линии поля замкнуты вокруг центрального канала, то спирали ионов и электронов охватывают центральный канал. Плазма в холодном канале создается воздействием на воздух жесткого ультрафиолетового излучения, образующегося при рекомбинации ионов в горячем центральном канале [4, стр. 231], а также ступенчатым возбуждением и последующей ионизацией атомов воздуха видимым светом большой интенсивности (плотность потока фотонов), излучаемых горячим каналом [3, стр. 229 .230]. Газовое давление холодной плазмы Р мало в сравнении с магнитным давлением Рм мощного поперечного кругового поля. При малых отношениях В = Р/Рм роль теплового движения заряженных частиц плазмы невелика. Такая плазма считается замагниченной. Радиус спирального вращения ионов азота и кислорода вокруг (и вдоль силовых линий кругового поля), как видно по ширине канала, не превышает 0,25 м. Похоже, этим и определяются размеры холодного канала.

Радиусы ларморовского вращения ионов воздуха в магнитном поле соответствуют их массе и скорости движения. Следовательно, радиус ларморовских спиралей протонов водорода должен быть раз в десять меньше радиуса спиралей ионов азота и кислорода. Частота вращения по спиральной орбите зависит только от напряженности магнитного поля, заряда и массы иона. Все ионы одного типа в определенном магнитном поле вращаются с одинаковой частотой [2, стр. 71]. Это означает, что их токовые нити почти параллельны, поэтому ближайшие из них, находящиеся на расстоянии магнитного взаимодействия, стягиваются или группируются в одну общую спиральную трубу. Таким образом, внешний канал холодной плазмы представляет собой великое множество коллективных спиральных труб ионов азота, кислорода, протонов водорода и электронов, нанизанных на горячий линейный канал. Ионы азота и кислорода движутся по периметру коллективных труб большого радиуса, а внутри них и между трубами движутся по спиральным трубам малого радиуса протоны и электроны. Повсеместно в холодном канале движутся и нейтральные атомы воздуха, которые могут свободно покинуть его.

Токи намагничивания вращающихся по спиральной трубе объединившихся ионов, суммируясь, образуют собственное продольное поле, которое внутри спиральной трубы направлено навстречу круговому магнитному полю линейной молнии и ослабляет его, а поверх трубы – совпадает с ним по направлению, то есть усиливает его плотность. Собственные продольные поверхностные магнитные поля соседних спиральных ионных труб также усиливают магнитное поле линейной молнии. Следовательно, особенно усиливается плотность магнитного поля линейной молнии в промежутках между соседними спиральными трубами, примыкающими друг к другу. В результате несколько нарушается равномерность кругового магнитного поля линейной молнии. Появляется вероятность пережатия горячего центрального канала молнии в местах увеличения плотности его магнитного поля.

Одновременно с собственным продольным полем возникает еще и собственное поперечное магнитное поле, замыкающееся вокруг ионной спиральной трубы, создаваемое поступательным движением ионизованных частиц вдоль силовых линий поля линейной молнии, находящихся внутри трубы, а также и спиральным движением ионов вокруг и вдоль силовых линий этого же поля (если преобладает движение ионов в одну сторону).

Создают свои собственные магнитные поля и протонные, и электронные спирали, в том числе находящиеся внутри широких ионных спиралей, но там они почти взаимно компенсируются. О них пойдет речь ниже.

Если собственные продольные поля локализуются только вдоль своих собственных спиралей, то собственные поперечные магнитные поля ионных спиральных труб могут объединяться, они суммируются с рядом лежащими ионными спиралями, сцепляются с ними, образуя одно общее магнитное поле, проходящее вдоль периферии холодного канала и замыкающееся через центральный горячий канал, проходя его вдоль (когда преобладающие движения ионов в соседних спиральных трубах совпадают по направлению).

По сути дела, коллективные ионные спиральные трубы большого радиуса с находящимися внутри них тонкими спиралями частиц других типов являются зачатками шаровых молний. Но спирали холодной плазмы, очевидно, не успевают накопить энергии вращения в магнитном поле короткой линейной молнии и по завершении ее разряда быстро разрушаются и ионы с электронами рекомбинируют в атомы.

Круговое поперечное магнитное поле линейной молнии, удерживая горячую плазму от расширения на всей длине центрального канала молнии, однако не удерживает плазму на концах канала со стороны его торцов, благодаря чему и происходит разряд молнии. К торцу канала, упирающемуся в землю, стремительно текут токи проводимости радиально со всех сторон земли, а на противоположном конце токи устремляются из канала во все стороны тучи. Находящаяся в канале под высоким давлением плазма выталкивается через торцы канала наружу и в туче и на стороне земли, преодолевая встречное движение электронов в туче, а ионов – на стороне земли. Наверное, по этой причине, а также из-за падения напряжения на большой длине канала, разряд молнии прерывается несколько раз. Магнитное поле на концах у торцов канала молнии все такое же мощное и должно быть заметно расширенное в виде рупоров, поскольку токи на одном конце сходятся к торцу, а на другом – расходятся от торца во все стороны, то есть плотность поля несколько расширяется. Вполне вероятно, что часть турбулентно выброшенной горячей плазмы может завернуться у торцов канала вокруг магнитного поля при разряде какого-либо очередного импульса молнии. То есть частицы горячей плазмы, разлетаясь в стороны, пересекают поперек или под углом силовые линии кругового магнитного поля молнии и в нем движутся по ларморовским окружностям или спиралям. Электроны вращаются с малым радиусом по часовой стрелке вокруг силовых линий (если силовые линии направлены от нас), а положительные ионы азота, кислорода и протоны – против часовой стрелки с радиусом в сотни раз большим, если они влетели в поле с такой же скоростью, как и электроны [2, стр. 8, 43, 70, 71]. Значительная часть ларморовских спиралей электронов и спиралей протонов оказываются внутри широких спиралей ионов азота и кислорода.


Страница: