Естествознание
Рефераты >> Физика >> Естествознание

Формами существования материи являются про­странство и время. Материя неотъемлема от них. Современная наука оперирует такими струк­турными уровнями, как элементарные частицы и поля, атомы и молекулы, макроскопические тела, геологические системы, планеты и звезды, галактики и метагалактики; совокупности организмов, способных к воспроизводству и, наконец, общество. Мы будем изучать только первые структурные уровни- поля и частицы, макро­скопические тела.

Различают ряд основных форм движения материи: механическую, физиче­скую (включая тепловую, гравитационную, ядерную и т.д.), химиче­скую, биологическую, общественную. Высшие формы движения включают в себя более низшие, но не сводятся только к ним. Так, ядерные процессы невозможно описать только формулами классической механики.

В настоящем курсе будут рассмотрены лишь простые формы движения материи - механическая, физическая и химическая. Для описания материи и ее дви­жения необходимо ввести количественные меры этих величин исходя из поставленных задач. Масса является количественной мерой материи и вводится как для микро- и макрообъектов, так и для полей. Одной из количественных мер движения материи является энергия. Она имеет много форм: механиче­ская, тепловая, ядерная, химическая и т.д. Поскольку материя не существует без дви­жения, а движение без материи между количественными характеристиками меры и движения материи должна существовать связь. Эта связь была установлена в начале нашего века А. Эйнштейном (1879-1955) в работах по теории относи­тельности.

Мы будем рассматривать два вида материи - вещество и поле. К первому отнесем элементарные частицы, атомы, молекулы, все построенные из них макросистемы. Ко второму отнесем особую форму материи, физическую систему с бесконечным числом степеней свободы. Примерами физических полей могут служить электромагнитные и гравитационные поля, поля ядер­ных сил, а также волновые поля.

4. ПОСТУЛАТИВНОСТЬ ОСНОВНЫХ ЗАКОНОВ ЕСТЕСТВО­ЗНАНИЯ, ГРАНИЦЫ ИХ ПРИМЕНИМОСТИ.

Для описания поведения простых и сложных систем нужно установить “правила игры”, т.е. законы которым подчиняются те или иные вид движе­ния материи. В некоторых науках, которые не относятся к естественным, на­пример геометрия, поступают следующим образом. Сначала формулиру­ются аксиомы, а потом из них делаются выводы (теоремы). Логика построения естественных наук другая, нельзя сразу ввести законы и смотреть, что из них следует. Так поступить нельзя, поскольку исследователю неизвестны все законы естествознания. Одной из задач является именно их установление и формулирование. Но, ответив на каждый вопрос, исследователь неизбежно ставит несколько новых. Чем больше познается, тем шире становятся границы непознанного. Установленные на определенном этапе развития науки законы, всегда являются приближенными. По мере накопления знаний, новых экспериментальных фактов, явлений и увеличения точности измерений появляются данные, не укладываю­щиеся в рамки имеющихся законов и эти законы пересматриваются.

Есть и другая сторона этого вопроса. Для точной формулировки законов ес­тествознания, в особенности физики, требуются новые определения и по­нятия, знание специальных разделов математики. Исааку Ньютону (1643-1727) для описания законов механики потребовалось создать совершенно новые для своего времени разделы высшей математики: дифференциальное и интегральное исчисление. Физики часто сталкивались с ситуацией, когда имевшегося математического аппарата оказывалось недостаточно для получе­ния количественных формулировок полученного закона и требовалось создавать специальный математически аппарат. Пример с Ньютоном и Лейбни­цем и созданием дифференциального и интегрального исчисления является классическим.

В этом разделе мы рассмотрим самые общие представления о том, как устанавливаются законы естествознания, как они применяются и чем они ограни­чены. Уже говорилось, что опыт - единственный судья истины. Законы ес­тествознания постулируются на основании наблюдаемых опытных фактов. Сначала идет процесс накопления знаний в определенной области. Эти результаты анализируются и делается некоторое предположение. Это предположение не выводится из других законов. Оно возникает само по себе на основании опыта. Сделанное умозаключение, сформулированное в виде математической формулы, становится частью гипотезы. Если последующие опыты подтверждают правильность этого предположения, оно становится законом.

Проиллюстрируем сказанное несколькими примерами. Закон всемирного тяготения, был открыт И. Ньютоном не потому, что, как любят писать в популярной литературе, ему “упало на голову яблоко” Закон родился в результате анализа трех законов движения планет И. Кеплера (1571-1630). Законы Кеплера позволяли рассчитывать с высокой точностью движения планет. Ньютон показал, что эти законы могут быть получены на основании одного закона - закона всемирного тяготения:

, где G - константа, m1 и m2 - массы тел, r - расстояние между ними.

Анализируя опыты, Ш.О. Кулон в 1785 году сформулировал закон взаимодействия зарядов, позже названный его именем:

,

где q1 и q2 - заряды, r - расстояние между ними; константа определяется выбором системы единиц. До Кулона этот закон ни в каком виде не формулировался.

Уже отмечалось, что все научные законы всегда приближенные. Почему же сразу не удается открыть “правильный закон”? Почему всегда приходится начинать с каких-то приближений? Во-первых, для “точной” формулировки закона зачастую бывает еще не готов соответствующий математический аппарат, а, во-вторых, экспериментальные данные всегда бывают недостаточно точны. Точность измерений определяется с одной стороны нашими приборами, а с другой стороны - некоторыми фундаментальными запретами, связанными с природой явления. Существует, например, соотношение неопределенностей Гейзенберга, которое ограничивает точность одновременного измерения импульса и координаты частицы.

Приведем пример. Реально мы можем измерить массу волчка с точностью до долей микрограмма. Измеряя массу покоящегося и вращающегося волчка мы всегда будем получать один результат. Отсюда, казалось бы, можно было вывести закон, что масса тела постоянна и не зависит от его скорости. Но оказывается масса от скорости зависит когда скорости становятся сравнимыми с скоростью света.

Сказанное приводит нас к выводу, что законы и теории не абсолютны. Они развиваются по мере накопления знаний. Фундаментальные законы естествознания описывают огромное количество явлений в разных областях. И все они подчиняются некоторым общим правилам. Рассмотрим их.

Во первых, законы сами по себе не меняются. Именно поэтому они и называются фундаментальными. Иначе никакая наука не могла бы развиваться. Но, надо помнить о том, что закон написан для определенной области явлений.

Всякий раз, когда с определенной степенью точности подтверждается какой-либо закон, можно утверждать, что закон окончателен и ни какой результат его не опровергнет в той области, для которой он написан. Однако может так случится, что появление новых экспериментальных данных или теорий приведет к тому, что закон окажется приближенным. Иначе говоря, увеличение точности измерений может обнаружить неточность даже самых незыблемых законов.


Страница: