Железные Дороги России
Рефераты >> Физика >> Железные Дороги России

Система постоянного тока. Тяговые двигатели для электровозов и электропоездов постоянного тока в основном изготовляют на напряжение не выше 1500. В(редко – незначительно большее). Попарное последовательное соединение таких двигателей позволяет иметь в тяговой сети напряжение, равное 3000 В. При таком напряжении энергия тяговым двигателям передается без изменения уровня напряжения на электровозе. В этой системе электровозы получаются наиболее простыми, что и составляет одно из главных ее преимуществ. При таких значениях напряжения расстояния между подстанциями на грузонапряженных дорогах принимаются, как правило, около 15 – 20 км, а сечения проводов контактной сети по сравнению с другими системами тока и напряжения – в 2 – 3 раза большими. В столь же раз больше получаются потери энергии в проводах контактной сети.

В дальнейшем при увеличении грузопотоков приходится добавлять подстанции, и тогда расстояние между ними уменьшается вдвое. Большая площадь сечения проводов контактной сети и большее число тяговых подстанций, вызванное относительно невысоким напряжением в тяговой сети, являются существенным недостатком системы постоянного тока. Номинальное напряжение на метрополитенах России и ряде других стран равно 750 В.

Недостатком системы постоянного тока являются также большие потери энергии в пусковых реостатах при разгоне поезда. Особенно при пригородном движении, где доля пусковых потерь достигает – 12 - 15%.

Влияние нагрузок тяговой сети на смежные линии при системе постоянного тока относительно невелико и легко устранимо, что можно отнести к существенным преимуществам этой системы. Иначе обстоит дело с электрокорозией подземных сооружений, что как уже было отмечено, является особенностью и одним из существенных недостатков системы постоянного тока. Для борьбы с этими явлениями разработаны эффективные мероприятия, значительно уменьшающие опасность электрокоррозии подземных сооружений.

Участки дорог постоянного тока питаются от энергосистемы, а энергия преобразуется с помощью полупроводниковых преобразователей. Ранее подстанции постоянного тока оборудовались в основном двигатель – генераторы. В настоящее время для преобразования переменного тока в постоянный применяют только полупроводниковые преобразователи.

В России в связи с переходом электрификации по системе однофазного тока промышленной частоты электрификацию на постоянном токе используют в основном при продолжении электрификации существующих линий, ранее электрифицированных по системе постоянного тока.

Слабое влияние тяговой сети постоянного тока на смежные линии, являющееся существенным преимуществом этой системы, заставило искать решения по повышению напряжения в контактной сети. Но это определяло необходимость преобразования постоянного тока одного напряжения в постоянный ток другого более низкого напряжения. Велись различные исследования в этом направлении. Создание управляемых полупроводниковых преобразователей открыло возможность для разработок экспериментальных исследований по внедрению системы импульсного преобразования постоянного тока на электровозе, что может позволить повысить напряжение в контактной сети до 6 кВ. Разрабатываются также системы с преобразованием постоянного тока контактной сети в трехфазный ток регулируемой частоты при асинхронных двигателях на электровозах.

На дорогах постоянного тока не тяговые потребители питаются через специальные трансформатор от шин тяговых подстанций.

Система однофазного тока промышленной частоты 50 Гц. Основным преимуществом этой системы по сравнению с системой постоянного тока является возможность использования более высокого напряжения в контактной сети России принято 25 кВ. При этом тяговые подстанции превращаются в простые трансформаторные, а сечение контактной сети значительно уменьшается даже при больших расстояниях между подстанциями (40 – 60 км.).

Наибольшее распространение получил э.п. с. с двигателями постоянного тока и преобразовательной установкой на локомотиве. Трансформаторы этой установки позволяют регулировать напряжение на двигателях под нагрузкой.

При питании однофазной нагрузки от трехфазной районной сети неизбежна различная нагрузка фаз первичной системы электроснабжения. Не симметрия нагрузки приводит к ухудшению работы первичной системы (генераторов, трансформаторов, линий электропередачи, релейной защиты). При мощных энергосистемах обычно тяговая нагрузка составляет небольшую долю от всей нагрузки системы. В этих случаях не симметрия тяговой нагрузки не играет существенной роли в нагрузке, действующей на отдельные элементы системы. Однако она вызывает на шинах тяговых подстанций и в питающих их линиях передачи существенную не симметрию напряжения. Не симметрия напряжения оказывает неблагоприятные влияния на работу трехфазных потребителей, получающих питание от этих подстанций и линий электропередачи. Значительное влияние тягового тока на линии слабого тока и необходимость принятия дорогих мер защиты уменьшают эффективность систем переменного тока. Это соображение частично теряет силу, если линии связи были калиброваны до электрификации.

Системы однофазного тока промышленной частоты принята как основная для дальнейшей электрификации железных дорог России, а также во Франции, Японии (при частоте 60 Гц), Англии и др.

Схемы питания тяговых подстанций от энергосистемы. Согласно правилам устройства электроустановок в России все приемники по степени их значимости и ответственности разделяются на три категории и соответственно этому обеспечивается необходимая степень надежности схем питания.

Электрифицированные железные дороги, т. е. дороги с электрической тягой, относятся к первой категории, поскольку перерыв в их работе приносит значительный ущерб народному хозяйству. Для таких потребителей должно быть предусмотрено питание от двух независимых источников электроэнергии. Таковыми считаются отдельные районные подстанции, разные секции шин одной и той же подстанции районной или тяговой. В соответствии с этими схемами питания тяговых подстанций от энергосистемы на дорогах России во всех случаях должна быть такой, чтобы выход из работы одной из районных подстанций или линии передачи не мог бы явиться причиной выхода из строя более одной тяговой подстанции.

В общем случае схема питания тяговых подстанций зависит от конфигурации районной сети, резерва мощности электрических станций и подстанций, возможности их расширения и т.п. При этом во всех случаях для большей надежности стремятся иметь схему двустороннего питания тяговых подстанций или, если это связано со значительными затратами, питают подстанцию от одного источника двумя параллельными линиями передачи или одной двух цепной линией. Наиболее типичной является схема питания от продольной линии электропередачи.

При двустороннем питании тяговых подстанций от двух цепной линии передачи две цепи линии заводятся только на так называемые опорные тяговые подстанции. Остальные подстанции – промежуточные – получают питание через отпайку (отпаечные), либо выключаются в рассечку линии передачи поочередно к разным цепям линии (проходные).


Страница: