Арсенид индия. Свойства, применение. Особенности получения эпитаксиальных пленок
Рефераты >> Технология >> Арсенид индия. Свойства, применение. Особенности получения эпитаксиальных пленок

где n - показатель преломления, s - проводимость, l - длина волны,

Оценки показывают, что при l=3 мкм и n=1018 см-3 в пластине арсенида индия толщиной 400 мкм поглотится около 80% светового потока.

Подвижность в арсениде индия.

Подвижность носителей заряда в кристаллах арсенида индия ограничивается несколькими механизмами рассеивания:

· рассеянием на оптических и акустических фононах;

· на ионных примесях;

· на нейтральных примесях:

· на дефектах кристаллической решетки (дислокациях):

· на носителях заряда.

В приближении времени релаксации t подвижность вычисляется по формуле (7)

где t - вычисляется для каждого механизма рассеивания отдельно.

В монокристаллических объемных образцах арсенида индия достигнуты следующие значения подвижности:

n-тип, m=30000 см2/Вс(300К),

р-тип, m=450 см2/Вс(300К).

Сростом концентрацией примесей подвижность падает.

Методы глубокой очистки индия и мышьяка.

Для получения монокристаллов арсенида индия с высокими и стабильными электрофизическими параметрами необходимо использовать высокочистые исходные материалы.

Арсенид индия с трудом поддается очистке кристаллизационными методами в следствие высокого давления диссоциации при температуре плавления, высокой химической активности индия и мышьяка при температуре выращивания и близких к единице значений коэффициентов распределения основных примесей в исходных элементах, таких как сера, селен, цинк и др., а также из-за загрязнением кремнием из кварца при высокой температуре.

Методы глубокой очистки индия.

В индии предназначенном для синтеза полупроводниковых соединений, лимитирующими являются следующие примеси: алюминий, медь, магний, кремний, серебро, кальций, серебро и сера.

Применяемые методы очистки индия можно разделить на химические и физические. Методы первой группы - субхлоридный, экстракционный, электролитический и перекристаллизация солей из растворов. Химические методы требуют наличия сверхчистых вспомогательных материалов кислот, щелочей, органических растворителей. Методы второй группы (физические) - термообработка, ректификация, вытягивание из расплава и зонная плавка - включают воздействие на индий каких-либо вспомогательных химических реактивов.

При применении для приготовлении электролита особо чистого натрия электролитическое рафинирование индия позволяет получить индий чистотой 99,9999% (выход по току 90%).

Субхлоридный метод получения индия высокой чистоты позволяет получать индий чистотой 99,9999%.

Для успешного осуществления метода вакуумной термообработки необходимо выполнения следующих условий:

· материал контейнера должен быть достаточно чистым и не взаимодействовать с расплавленном индием;

· термообработка должна проводится в условиях высокого вакуума (10-6 мм рт.ст.) и в остаточной атмосфере, не содержащей углеводородов.

Термообработка индия проводится в интервале температур 500-900ОС. Верхний предел температурного интервала ограничивается взаимодействием расплавленного индия с кварцем и значительным увеличение упругости пара индия.

Вакуумная термообработка позволяет получить индий чистотой 99,9999%.

Зонная плавка электрически рафинированного индия позволяет осуществлять дальнейшую очистку его от примесей.

При вытягивании кристаллов индия по методу Чохральского эффективная очистка происходит при выращивании кристаллов с большими скоростями вращения затравки (60-100 об/мин) и скоростью роста 2см/ч. Чистота индия выращенного по методу Чохральского, выше 99,9999%. Применение только одного способа очистки индия может оказаться недостаточным, и возможно потребуется сочетание различных способов (физических и химических).

Методы получения мышьяка и его соединений высокой степени чистоты.

Общее содержание примесей в мышьяке используемом для синтеза арсенида индия, не должно превышать 1×10-5%, суммарное содержание селена и теллура должно быть < 1×10-6% каждого в отдельности.

Наиболее перспективными технологиями очистки мышьяка являются хлоридная и гидридная с получением промежуточных высоко чистых продуктов треххлористого мышьяка или гидрида мышьяка. Хлоридная схема получения чистого мышьяка включает:

· хлорирование металлического мышьяка хлором или взаимодействие трехокиси мышьяка с соляной кислотой;

· очистку трихлорида мышьяка ректификацией;

· восстановление очищенного трихлорида мышьяка водородом до компактного металлического мышьяка.

Перед ректификацией треххлорида мышьяка проводят сорбционную очистку.

Для получения особо чистых гидрида мышьяка и элементарного мышьяка используется гидридная схема. Гидридная технология мышьяка имеет ряд преимуществ:

· содержание мышьяка в гидриде выше, чем в любом другом соединении;

· разложение гидрида мышьяка происходит при невысоких температурах и отсутствует необходимость в восстановлении;

· гидриды имеют малую реакционную способность по отношению к конструкционным материалам при температурах синтеза и очистки.

Недостатками гидрида мышьяка являются высокая токсичность и взрывоопасность.

Гидридная технология очистки мышьяка состоит из следующих этапов:

· синтез арсенида металла II группы;

· гидролиз арсенида с получением арсина;

· очистка арсина сорбцией;

· вымораживание и ректификация;

· разложение арсина до металлического мышьяка.

Мышьяк, полученный по приведенным схемам, с успехом используется для синтеза арсенида индия. Кроме того, треххлористый мышьяк находит широкое применение для нарашивания эпитаксиальных слоев арсенида индия.

Эпитаксиальное наращивание арсенида индия из газовой фазы.

Газотранспортные процессы, в основе которых лежат обратимые химические реакции, широко применяются для получения эпитаксиальных структур полупроводниковых соединений А3В5. Основными достоинствами процесса получения эпитаксиальных слоев арсенида индия из газовой фазы в проточной системе являются:

· простота конструктивного оформления процесса;

· низкое пересыщение вещества над растущим кристаллом;

· сравнительно невысокие температуры кристаллизации, возможность предотвращения загрязнения материалом контейнера;

· возможность управления процессом роста изменением скорости потока и концентрации транспортирующего агента;

· широкие возможности легирования слоев различными примесями;

· возможность автоматизации процесса;

· осуществление непрерывного процесса;

· возможность получение многослойных структур и заданной морфологии.

Суммарные реакции, наиболее часто используемых для осаждения эпитаксиальных слоев арсенида индия и переноса компонентов, в общем виде мощно представить следующим образом:

4InГ3+As4+6H2«4InAs+12HГ; (8)

3As+2InГ3+3/2H2«3AsГ+2In+3HГ, (9)

3AsГ+2In«2InAs+AsГ3; (10)


Страница: