Наша галактика
Рефераты >> Астрономия >> Наша галактика

Первый каталог, в котором были приведены относительные положения ярких звезд, был составлен еще во II в. до н.э. древнегреческим ученым Гиппархом. Этим каталогом пользовался Клавдий Птолемей — автор геоцентрической системы мира. В начале XVIII в. английский астроном Эдмонд Галлей сравнил наблюдавшиеся в его время положения звезд с теми, которые были приведены у Птолемея. Для нескольких ярких звезд он обнаружил заметное перемещение относительно остальных. Так впервые было доказано, что звезды движутся.

Чтобы измерить тангенциальную скорость какой-нибудь звезды, при помощи специальных измерительных приборов сравнивают фотографии одного и того же участка неба, сделанные на одном и том же телескопе с промежутком времени в несколько лет или десятилетий. За этот промежуток времени близ­кие звезды слегка смещаются на фоне слабых, более далеких, прак­тически неподвижных для наблюда­теля звезд. Такое смещение очень мало и лишь у немногих звезд превышает одну угловую секунду в год.

Зная расстояние до звезды, легко по угловому смещению найти ее тангенциальную скорость Vt Пусть, например, звезда, расстояние D до которой 30 св. лет, или около 3*10­­­­17 м, перемещается на угол a=0,2" в год. Следовательно, ее смещение за год равно отрезку длиной D*sin a =3*1011 м. Значит, тангенциальная скорость состав­ляет 3*1011 м в год, или около 10 км/с.

Второй способ оценки скорости звезд основан на измерении смещения линий в их спектрах, определяемого эффектом Доплера. Этот способ позволяет найти проекцию вектора скорости звезды на луч зрения, или лучевую ско­рость звезды Vr (рис. 4).

Полная скорость звезды вычисляется через тангенциальную Vt и лучевую Vr по теореме Пифагора: . Измерения показали, что большинство звезд, сравнительно близких к Солнцу, движется относительно него со скоростями, не превышающими 30 км/с.

Из-за движения звезд вид звезд­ного неба со временем должен ме­няться. Одни звезды приближаются к нам и в будущем станут более яркими, другие навсегда удаляются от Солнечной системы. Изменяется и их положение на небе. Но этот процесс происходит настолько мед­ленно, что нужны многие сотни лет, чтобы перемещение даже бли­жайших звезд стало заметным на глаз.

2.Вращение Галактики. Когда были измерены скорости движения большого числа звезд — как близ­ких, так и далеких от Солнца,— выяснилась общая картина их дви­жения. Оказалось, что звезды га­лактического диска обращаются во­круг ядра Галактики в одну и ту же сторону по орбитам, близким к круговым. Скорость их движения вокруг ядра в окрестности Солнца составляет почти 250 км/с. Вместе с ними движется и Солнце. Раз­делив длину окружности радиусом, равным расстоянию до центра Галак­тики, на скорость, легко найти, что полный период обращения Солнца в Галактике составляет примерно 200 млн. лет.

Зная скорость обращения и радиус круговой орбиты, можно вычис­лить массу внутренней части Галак­тики, используя формулу для кру­говой скорости :

Подставляя известные нам числовые значения V=2.5*105 м/с,R=3*1020 м и G=6,7*1011 Н*м2/кг­2, получаем, что M=2,8*1041 кг, или около 140 млрд. масс Солнца. Такую массу имеет все вещество Галакти­ки, находящееся ближе к ее центру, чем Солнце.

Звезды и скопления звезд сферической составляющей движутся по-иному, не так, как звезды диска. Их орбиты сильно вытянуты и наклонены к плоскости диска под все возможными углами (рис. 5) Такие звезды имеют относительно Солнца очень большие скорости (до 200—300 км/с). Но относительно центра Галактики средние скорости звезд как сферической составляющей, так и диска приблизительно одинаковы.

Как мы видим, движение звезд в Галактике напоминает движение тел Солнечной системы. Действитель­но, планеты, как и звезды диска, движутся вокруг центра в одну сторону и примерно в одной плос­кости, а кометы, как и звезды сферической составляющей, движут­ся по вытянутым орбитам в самых различных плоскостях.

III. МЕЖЗВЕЗДНАЯ СРЕДА

1.Межзвездный газ. В состав нашей Галактики входят не только звезды. Наблюдения показали, что межзвездное пространство нельзя считать абсолютно пустым. Основная масса межзвездной среды приходит­ся на разреженный газ. Этот газ обладает способностью слабо светиться, если горячие звезды осве­щают его ультрафиолетовым светом, и излучать потоки радиоволн, которые можно уловить радиотелеско­пами. Межзвездный газ имеет при­мерно такой же химический состав, как и большинство наблюдаемых звезд. Он преимущественно состоит из легких газов (водорода и гелия).

Большая часть межзвездного газа сосредоточена в пределах диска Галактики, где межзвездная среда образует вблизи плоскости симмет­рии диска газопылевой слой тол­щиной в несколько сотен световых лет. В пределах этого слоя находится и наше Солнце с окружающими его звездами. Газопылевой слой вместе со звездами диска принимает участие во вращении Галактики.

Даже вблизи плоскости звездного диска концентрация частиц газа очень мала. У поверхности Земли, например, в 1 см3 содержится 3*1019 молекул воздуха, а в меж­звездном газе на два кубических сантиметра приходится в среднем только один атом газа. Но меж­звездный газ занимает такие боль­шие объемы пространства, что его полная масса в Галактике достигает нескольких процентов от суммарной массы всех звезд.

Газ в межзвездном простран­стве наблюдается в трех состояниях: ионизованном, атомарном и моле­кулярном.

Ионизованный газ. Горячие звезды мощным ультрафиолетовым излучением нагревают и ионизуют окружающий межзвездный газ. Нагре­тый газ излучает свет, и поэтому области, заполненные горячим га­зом, наблюдаются как светящиеся облака. Они называются светлыми газовыми туманностями. Темпера­тура газа в них составляет около 10000 К.

Самая заметная туманность рас­положена в созвездии Ориона и на­зывается туманностью Орио­на. В сильный бинокль или небольшой телескоп она видна как бесформенное облачко со слабым зеленоватым свечением. Это обла­ко состоит из горячего ионизован­ного газа, масса которого оцени­вается примерно в тысячу масс Солнца.

Атомарный газ. Основная масса межзвездного газа в диске Галак­тики удалена от горячих звезд и поэтому не ионизована и не излу­чает свет. Но такой «невидимый» газ все же можно наблюдать радио­астрономическими методами. Было доказано (вначале теоретически, а затем подтверждено наблюдениями), что атомы водорода, входящие в состав межзвездного газа, излу­чают радиоволны с длиной волны 0,21 м (с частотой 1420 МГц).


Страница: