Расширяющаяся Вселенная и красное смещение
Рефераты >> Астрономия >> Расширяющаяся Вселенная и красное смещение

Давайте определим, например, расстояние до некоторой галактики, при радионаблюдениях которой было найдено, что длина волны нейтрального водорода см наблюдается на см, т.е. ее красное смещение . Приняв значение постоянной Хаббла км/с/Мпк, из закона Хаббла находим Мпк[3].

Мы можем разными способами оценить расстояния до звезд. Все эти методы дают большую ошибку, но применив несколько методов вместе, мы, как представляется, можем разумно оценить расстояние до многих звезд. Когда мы наблюдаем эти звезды, мы видим, что их свет состоит из разных цветовых компонентов, и эти компоненты, как мы могли бы предположить, появляются вследствие нагревания различных видов атомов, из которых состоят звезды. Есть одна проблема – эти характерные спектральные составляющие смещены к красному. По красному смещению можно определить не только скорость удаления далекой галактики от наблюдателя, но и расстояние r до нее, воспользовавшись законом Хаббла: v=H0r, где H0 – постоянная Хаббла[4], v – скорость космологического разбегания («разлета») скоплений галактик в зависимости от расстояния r до них. [8]

Общепринятое объяснение этому состоит в том, что вселенная – само пространство – на самом деле расширяется. Испускаемый звездами свет имеет правильный спектр, но за годы, пока он шел к нам, пространство, по которому он распространялся, расширилось, и свет (который находится в пространстве) расширился вместе с ним, точно так же как линия, нарисованная на воздушном шаре расширяется по мере его надувания. [5] Таким образом красное смещение также является мерой времени, протекшего с момента начала расширения Вселенной до момента испускания света в галактике. В рамках модели однородной и изотропной Вселенной со средней плотностью, равной критической плотности, это время выражается по формуле , где H0 – постоянная Хаббла, z – красное смещение. Так, по современным астрономическим данным, самые первые галактики образовались в момент времени, соответствующий красному смещению 5, то есть спустя примерно 1/15 часть современного возраста Вселенной. Значит, свет от этих галактик шел до нас примерно 8.5-14 миллиардов лет. [8]

Когда мы используем закон красного смещения Хаббла для того, чтобы вычислять расстояния до отдаленных галактик, мы делаем так согласно предположению, что первоначальный свет, приходя к нам за тысячи миллионов лет, испускался, по существу, на тех же самых длинах волн, какие наблюдаются в локальных современных эквивалентных звездных процессах. Исходя из такого основополагающего предположения, мы можем выдвинуть гипотезу о некотором механизме типа Эффекта Доплера (изменение длины волны l (или частоты), наблюдаемое при движении источника волн относительно их приемника. Характерен для любых волн (свет, звук и т. д.). При приближении источника к приемнику l уменьшается, а при удалении растет на величину l–lо=nlо/с, где lо – длина волны источника, с – скорость распространения волны, n – относительная скорость движения источника [7], рис. 6), чтобы сдвинуть спектр света в область менее энергетических, но более длинных волн, которые мы обнаруживаем. Кажущиеся размеры и выход мощности излучения квазаров, как в настоящее время определено при использовании жизнеспособной идеи красного смещения, кажется, готовы потрясти самые основы физики.

Рисунок 6. Эффект Доплера: а ­– оба наблюдателя на тротуаре слышат звук сирены стоящей на месте пожарной машины на одной и той же частоте; б – наблюдатель, к которому приближается машина, слышит звук более высокой частоты, а наблюдатель, от которого машина удаляется, слышит более низкий звук.

Если галактики – конденсаты изначального космического «бульона», то их материальные плотности должны увеличиваться со временем. В современной физике выдвигается гипотеза о том, что унитарный электрический заряд пропорционален локальной галактической материальной плотности (концентрации). То есть, электрический заряд любого данного электрона или протона связана с общим количеством других протонов, электронов, и т.д., которые находятся достаточно близко, чтобы влиять на это через прямые электродинамические элементарные взаимодействия. Расстояние пяти световых лет может быть достаточным для нашего оценочного предела для прямых электродинамических влияний. Эта гипотеза выдвинута с использованием теоремы угасания, где заряженные частицы, находящиеся в среде, абсорбируют и заново излучают энергию электромагнитного поля, таким образом гася первоначальную энергию. [6]

Предполагается, что если унитарный электрический заряд в пределах галактик увеличивался в течение космологических веков, то сила электрических взаимодействий между атомными ядрами и их электронами, составляющими эти галактики, также увеличивалась. [5] Размеры атомов должны уменьшаться, а энергии их электронов на орбитах должны увеличиваться как побочный эффект основного галактического процесса конденсации.

Согласно этому подходу орбитальные электроны в атомах звездных атмосфер ранней вселенной должны бы быть менее энергетические, чем те же электроны современных атомов. Энергетические различия между их электронными оболочками должны бы быть также меньшие по сравнению с современными. Таким образом, фотоны, испускаемые звездами, составленными из менее энергетических атомов, должны бы уносить меньшие количества энергии и будут иметь более длинные волны, чем те, которые испускаются атомами в настоящее время в расположении нашей галактики. [5]

Красные смещения, ассоциированные с все более и более удаляющимися галактиками, не могут быть связаны с постоянно увеличивающейся скоростью удаления, относительно нас, или с гравитационной потерей энергии или с «утомлением света». [6] Свет, возможно, просто испускался в более длинных волнах. Согласно этой точке зрения, красное смещение, вообще-то, все еще может использоваться как косвенный способ измерения расстояний, но это должно рассматриваться как эффект плотности (концентрации) галактического материала. Чем краснее «смещенный» свет, тем моложе источник во время излучения.

Но если мы жестко привязываем красные смещения к расстояниям, тогда недавно сконденсированные космологические объекты могли, очевидно, быть неправильно определены как являющиеся значительно более удаленными и, таким образом, намного более энергетическими, чем они фактически есть. Квазары, возможно, уже относятся к этой категории. [5]

Заключение

Огромное практическое значение науки в XX в. сделало ее той областью знания, к которой массовое сознание испы­тывает глубокое уважение. Слово науки весомо, и оттого рисуемая ею картина Вселенной часто принимается за точ­ную фотографию реальной действительности, как она есть на самом деле, независи­мо от нас. Ведь наука и претендует на эту роль – бесстра­стного и точного зеркала, отражающего мир в строгих понятиях и стройных математических вычислениях. Однако за привычным, коренящимся еще в эпохе Просвещения доверием к выводам науки, часто забывается, что она – развивающаяся и подвижная система знаний, что способы видения, присущие ей, изменчивы. А это означает, что сегодняшняя картина Вселенной не равна вчерашней. Повседневное сознание все еще живет на­учной картиной прошлых лет и веков, а сама наука уже убежала далеко вперед и рисует порой вещи столь па­радоксальные, что сама ее объективность и беспристраст­ность начинает казаться мифом .


Страница: