Основные концепции современной биологии
Рефераты >> Биология >> Основные концепции современной биологии

В то же время живые системы направленно и необратимо изменяются, самоорганизуются, что составляет сущность их развития. Клетки дифференцируются, работают и умирают. Организмы растут, размножаются, стареют и умирают. Биоценозы подвергаются сукцессиям и так же необратимо изменяются с изменением климата на Земле. Направленное изменение биосистемы по сути противоположно гомеостазу, оно происходит на основе обратных положительных связей.

Устойчивость, неизменность биосистем, с одной стороны, и их постепенное изменение, развитие - с другой - представляют диалектическое единство противоположностей, что и выражается понятием устойчивое развитие. При естественном и сбалансированном течении этих процессов клетки нормально функционируют на протяжении всей жизни организма, человек в полном здравии и уме доживает до 100-150 лет, биосфера Земли сохраняет перспективу жизнеспособности на миллионы лет. Однако разум человека, ставший частью биосферы и превративший ее в качественно новое образование - ноосферу, способен в короткое время разрушить процесс устойчивого развития. Мы проделываем это со своим собственным организмом, когда курим, злоупотребляем алкоголем, принимаем наркотики, не предостерегаемся от инфекций, много работаем и мало отдыхаем - в итоге сокращаем свою жизнь вдвое. Мы напрягаем до предела и вот-вот сломаем равновесие своей экологической системы. Отравленные воды, непригодные для питья; озоновые дыры в атмосфере, несущие губительные ультрафиолетовые лучи; парниковый разогрев земной поверхности от избытка в атмосфере углекислого газа и быстрое таяние полярных льдов; накопленные арсеналы ядерного, химического и биологического оружия, способные многократно уничтожить все живое на земле . - вот далеко не полный перечень итогов «разумной» деятельности человека в своем общем доме. Сумеет ли человечество осознать происходящее и принять меры прежде, чем эти изменения войдут в кризисную стадию? Есть ли еще шанс сохранить устойчивое развитие биосферы или мы доживаем последнее столетие? Увы, но сейчас никто не возьмет на себя смелость дать положительные ответы на эти вопросы.

ТЕМА 5. КОНЦЕПЦИЯ САМООРГАНИЗАЦИИ И БИОЛОГИЧЕСКОЙ ЭВОЛЮЦИИ. ФИЛОГЕНЕЗ

Сегмент 30. Проблема самоорганизации и наука синергетика

Сегмент 31. Возникновение жизни на земле

Сегмент 32. Этапы развития жизни на земле и современное биоразнообразие

Сегмент 33. Факторы биологической эволюции

Сегмент 34. Происхождение и эволюция человека

Заключение к теме 5

СЕГМЕНТ 30. ПРОБЛЕМА САМООРГАНИЗАЦИИ И НАУКА СИНЕРГЕТИКА

В предыдущей теме, рассматривая закономерности и механизмы саморегуляции живых систем, мы вынуждены были затронуть и проблему самоорганизации. Несмотря на созвучность терминов и их кажущуюся однозначность, на самом деле они выражают альтернативные понятия. Как мы только что показали на примере экологических систем, саморегуляция означает поддержание стабильного состояния системы, ее гомеостаз на основе обратных отрицательных связей, тогда как самоорганизация - это необратимое изменение, развитие системы на основе обратных положительных связей. В соответствии с законами диалектики эти две противоположности взаимодействуют, дополняют друг друга, так что вместе обеспечивают процесс устойчивого развития биосистем.

В этой теме мы должны более основательно рассмотреть вопросы происхождения и исторического развития жизни на Земле, эволюцию живых форм, причины и движущие силы этих глобальных процессов. Ключевым понятием в проблеме эволюции сегодня выступает понятие самоорганизации как основы любого процесса развития. В кругу этих проблем на стыке интересов физики, химии, биологии, а также социологии и философии во второй половине XX века возникла новая наука синергетика (от греческого synergos - совместно действующий) - наука о самоорганизации физических, биологических и социальных систем.

До недавнего времени проблема эволюции жизни оставалась чисто биологической, так как еще в XIX веке эволюция в неживых системах понималась физиками иначе, чем в биологии. Обращаясь с системами закрытого типа, теплофизика считала, что их самопроизвольное изменение, то есть эволюция, протекает путем дезорганизации и разрушения систем. При этом доля свободной энергии, способной к совершению работы, в системе убывает, а энтропия системы - деградированная, отработанная энергия - растет и стремится к максимальному значению. Этот закон был сформулирован как второе начало термодинамики, о чем мы уже говорили в сегменте 12. Однако оказалось, что реальные системы в природе являются открытыми. Это означает, что они обмениваются с внешней средой веществом, энергией и информацией. При поглощении внешней энергии в них возникают процессы самоорганизации, усложнения материи, но при этом происходит диссипация (рассеяние) использованной энергии, которая становится непригодной к производству работы. Можно сказать, что открытая развивающаяся система производит энтропию, но не накапливает ее, а рассеивает во внешнюю среду. Таким образом, интерес ученых сместился к изучению открытых диссипативных систем и принципов их взаимодействия с внешней средой, так как в этом взаимодействии и виделся ключ к пониманию универсальных законов эволюции.

Диссипативные системы - способные к поглощению и диссипации энергии и поддерживающие за этот счет свою собственную структуру и самоорганизацию - существуют на разный уровнях организации материи. Мы уже видели это на примере жизнедеятельности элементарной живой системы - клетки (см. сегмент 12 и рис. 4). За счет солнечной энергии или энергии экзотермических химических реакций клетка строит из простых неорганических веществ сложные органические вещества, поддерживает свою целостность и развитие, тем самым противодействуя росту энтропии.

Оказалось, что диссипативные процессы самоорганизации происходят и в неживой природе. В 60-70-е годы XX века физиками открыты кооперативные резонансные процессы элементарных частиц в лазере, происходящие под действием внешнего света, а в химии открыты колебательные реакции, идущие по принципу «химических часов». Причем движущей силой самоорганизующихся реакций, пружиной химических часов может выступать такая незаметная на первый взгляд сила, как гравитационное поле Земли. Колебательная химическая система, названная брюсселятором, изучена отечественными учеными радиохимиком Б. П. Белоусовым и биофизиком А. М. Жаботинским. При свободном поступлении в такую систему химических субстратов и при наличии в ней катализаторов происходит реакция, продукты которой удаляются, освобождая место для поступления новой порции субстрата. Реакция идет по замкнутому циклу и в результате изменения концентрации реагирующих веществ сопровождается образованием характерных пространственных структур - в виде расходящихся колец на реакционной поверхности. Создается впечатление пульсирующей, «живущей» химической системы.

Теоретическое объяснение и математическую модель процессов самоорганизации диссипативных структур предложил бельгийский физико-химик И. Р. Пригожин, получивший в 1977 г. за эту работу Нобелевскую премию. Назовем основные положения синергетики, объясняющие механизм самоорганизующихся процессов. С некоторыми из них мы уже хорошо знакомы.


Страница: