Билеты экзаменационные
Рефераты >> Математика >> Билеты экзаменационные

Следовательно n sqr a^k=( n sqr a)^k.

Билет №9

1. Все рациональные и дробно-рациональные ф-ции непрерывны на всей области определения. Этот факт следует из того что рациональные и дробно-рациональные ф-ции дефференцируемы во всех точках своих областей опр-ия.

Например: ф-ция f(x)=x^3-7X^2+24x непрерывна на множестве действительных чисел; а ф-ция g(x)=(x^3+8)/(x-2) непрерывна на промежутке (-¥:2) и на промежутке (2;+ ¥)

2. Логарифмом числа b наз-ся показатель степени в к-рую нужно возвести основание а чтобы получить число b.

Из опр-ия имеем: a^ logab =b (осн-ое лог-ое тождесто)

Св-ва логарифмов: При любом а>0(а¹1), и любых пол-ных х и у выполняются следующие св-ва:

1) loga1=0

2) logaа=1

3) loga(ху)= logaХ+ logaУ

Док-во: Воспользуемся осн-ным лог-им тождеством

a ^ logab =b и св-ом показат-ной ф-ции

а^ х+у =а^x * а^y имеем

а^ loga(xy)=xy= a^ logax *a^ logay =a ^logax +logay

4) loga(Х/У)= logaХ- logaУ

5) logaХ^Р= рlogaХ

6) Формула перехода:

logaХ= logbX/ logbA

Билет №10.

1. Ф-ция F наз-ся первообразной ф-ции f на промежутке I, если для всех значений аргумента из этого промежутка F¢(x)=f(x). Например ф-ция F(x)=4x^2+3x-1 явл-ся первообразной ф-ции f(x)=12x^3 на множестве всех действительных чисел. Действительно F¢(x)=12X^2+3 , т.е. F¢(x)=f(x).

2. Если каждому действительному числу поставлен в соответствие его тангенс , то говорят , что задана ф-ция тангенс. Обозначается это так: y=tg x.

Св-ва:1) Областью опр-ния ф-ции явл-ся все действительные числа, кроме чисел вида

X=пи/2 +пи k, kÎZ.

Это следует из опред-ия тангенса (tg x=sin x/cos x). Нужно искл-ть числа, при к-рых знаменатель cos x=0 т.е. х= пи/2+пи k, kÎZ.

2) Множеством значений ф-ции явл-ся все действительные числа:Е(у)=(-¥;+¥).

3) Ф-ция явл-ся нечетной ф-цией, т.е. для любого хÎD(y) выполняется нер-во tg(-x)=-tg x . покажем это, tg (-x)=sin (-x)/cos (-x)= -sin x/cos x= -tg x

4) Ф-ция явл-ся периодической с периодом пи k ,где k-целое кроме 0.Наименьшим положительным периодом тангенса явл-ся число пи.

5) Ф-ция тангенс принимает значения 0 при х=пи k, kÎZ. Решением ур-ия tg x=0 явл-ся числа х=пи k, kÎZ

6) Ф-ция tg принимает положительные значения при пи k<x<пи/2+ пи k, kÎZ.

Ф-ция tg принимает отрицательные значения при

-пи/2+пи k<x<пи k, kÎZ . Промежутки знакопостоянства следуют из опр-ия tg x=sin x/cos x.

7) Ф-ция tg возрастает на всей области опр-ия т.е. на промежутках (-пи/2+пи k; пи/2 +пи k) kÎZ

Билет №11

1) Пусть на отрезке [a;b] задана непрерывная и неотрицательная функция y=f(x); S-площадь соответствующей криволинейной трапеции (рис42). Для вычисления площади S разобьём отрезок [a;b] на n равных отрезков, длинна каждого отрезка [Xj;Xj+1] равна b-a / n; на каждом из отрезков построим прямоугольник, высота которого равна значению функции f(Xj); площадь такого прямоугольника равна f(Xj)* DX=f(Xj) * b-a / n. При увеличении числа промежутков, на которые разбивается отрезок [a;b], ступенчатая фигура, состоящяя из прямоугольников, будет «мало отличатся» от криволинейной трапеции, и если Sn-сумма площадей всех прямоугольников, то Sn~=S. В курсе математического анализа показывается, что для любой непрерывной на отрезке [a;b] функции y=f(x) существует число, к которому стремится сумма площадей прямоугольников при неограниченном увеличении n(n ® ¥). Это число называют интегралом, т.е. Sn ® integral (a;b) f(x) dx при n® ¥

2) Если каждому действительному числу поставлен в соответствие его синус, то говорят, что задана функция синус (обозначение y=sin x). Свойства функции синус 1) Область определения функции синус является множество всех действительных чисел, т.е. D(y)=R. Каждому действительному числу х соответствует единственная точка единичной окружности Px, получаемая поворотом точки P0(1;0) на угол, равный х радиан. Точка Рх имеет ординату, равную sinx. Следовательно, для любого х определено значение функции синус. 2) Множеством значений функции синус является промежуток [-1;1], т.е. E(y)=[-1;1]. Это следует из определения синуса: ордината любой точки единичной окружности удовлетворяет условию –1 <= Ypx<=1, т.е. –1<=sin x<=1 3)Функция синус является нечётной, т.е. для любого х принадлежащего R выполняется равенство sin(-x)=-sinx. Пусть точка Рх получена при повороте точки Р0 на х радиан, а точка Р-х получена при повороте точки Р0 на –х радиан (рис 43). Треугольник ОрхР-х является равнобедренным; ON-биссектриса угла РхОР-х, значит, ON является медианой и высотой, проведённой к стороне РхР-х. Следовательно, PxN = P-xN, т.е. ординаты точек Рх и Р-х одинаковы по модулю и противоположны по знаку. Это означает, что sin(-x)=-sinx. 4) Функция синус является периодической с периодом 2ПиR, где R- целое. Кроме 0. Наименьшим положительным периодом синуса является число 2Пи. Каждому действительному числу вида x+2ПиR, где R принадлежит Z, соответствует единственная точка единичной окружности Рх + 2ПиR, получаемая поворотом точки Р0(1;0) на угол x+2ПиR имеет ординату, равную sinx или sin(x+2ПиR). Таким образом, sin(x+2ПиR)=sinx. Этим показано, что числа вида 2ПиR, где R- целое, кроме 0, являются периодом функции. При R=1 имеем sin(x+2Пи)=sinx, следовательно, число 2Пи также является периодом функции синус. Покажем, что 2Пи-наименьшее положительное число, являющееся периодом функции синус. Пусть Т – положительный период функции синус; тогда sin(x+T)=sinx при любом х. Это равенство верно и при x= Пи.2, т.е. sin(пи/2 + T)=sin Пи/2 = 1. Но sinx=1,если x= Пи/2 + 2Пиn, где n принадлежит Z. Наименьшее положительное число вида 2Пиn есть 2Пи. 5) Функция синус принимает значение нуль при x=ПиR, где R принадлежит Z. Решением уравнения sinx=0 являются числа x=ПиR, где R принадлежит Z. 6) Функция синус принимает положительные значения при 2ПиR<x<Пи+2ПиR, где R принадлежит Z. Функция синус принимает отрицательные значения при Пи+2ПиR<x<2Пи+2ПиR, где R принадлежит Z. Промежутки знакопостоянства (рис44) следует из определения синуса. 7) Функция синус возрастает на промежутках [-Пи/2 + 2ПиR; Пи/2 + 2ПиR], где R принадлежит Z, и убывает на промежутках [Пи/2 + 2ПиR; 3Пи/2 + ПиR], где R принадлежит Z Докажем, что функция синус возрастает на промежутке [-Пи/2; Пи/2]. Пусть х1принадлежит [-Пи /2; Пи /2] и х2>x1. Сравним два значения функции: sinx2 – sinx1 = 2cos x1+x2/2 * sin x2-x1/2; 0< x2-x1/2 <= Пи/2, -Пи/2 < x1+x2/2< Пи/2, поэтому, учитывая промежутки знакопостоянства синуса и косинуса, имеем sin x2-x1/2 > 0, cos x1+x2/2>0. Таким образом, sinx2-sinx1>0, значит, большему значению аргумента соответствует большее значение функции, т.е. функция синус возрастает на промежутке [-Пи/2; Пи/2]. В силу периодичности синуса можно утверждать, что синус возрастает на промежутках [-Пи/2 + 2ПиR; Пи/2 + 2ПиR], где R принадлежит Z. 8) Функция синус имеет максимумы , равные 1, в точках Пи/2 + 2ПиR, где где R принадлежит Z. Функция Синус имеет минимумы, равные –1, в точках 3Пи/2 + 2ПиR, где R принадлежит Z. Покажем, что точка х0=Пи/2 является точкой максимума. Функция синус возрастает на промежутке [-Пи/2; Пи/2], т.е. sinx<sinПи/2 для любого х принадлежащего [-Пи/2 ; пи/2]. Функция синус убывает на промежутке [Пи/2; 3Пи/2], т.е. sin x < sin Пи/2 для любого х принадлежащего [Пи/2; 3Пи/2]. Ледовательно, х0+Пи/2 является точкой максимума (по определению), а значение sinx=1 является максимумом. В силу периодичности функции синус можно утверждать, что в точках Пи/2 + 2ПиR, где R принадлежит Z, функция имеет максимум, равный 1. 9) Функции арксинус дифференцируема в каждой точке области определения; производная вычисляется по формуле (sin x)’=cosx. (рис 45)


Страница: