Проявление симметрии в различных формах материи
Рефераты >> Естествознание >> Проявление симметрии в различных формах материи

От односторонних плоских континуумов легко перейти к односторонним семиконтинуума - бесконечным плоским фигурам, прерывным в одних и непрерывным в других направлениях. Примеры их - система начерченных на бумаге параллельных полос, плоский ряд карандашей и т. д. Их симметрия исчерпывается всего 7 видами. Причем если отбросить в формулах симметрии плоских односторонних семиконтинуумов символ непрерывной оси переносов, то получается 7 формул симметрии уже известных нам бордюров. Это значит, что плоские односторонние семиконтинуумы - это обыкновенные бордюры, до бесконечности вытянутые в ширину.

Слои – это фигуры без особенных точек, с особенной, не обязательно полярной плоскостью и двумя осями переносов. Таким образом, сетчатые орнаменты - лишь особого рода слои. Примерами слоев являются складчатые слои полипептидных цепей, тончайшие пленки, прозрачные двусторонние вывески и т. д.

Вывод видов симметрии двусторонних плоских континуумов осуществляется размножением фигур двусторонней розетки посредством двух взаимно перпендикулярных непрерывных переносов. Так как число групп симметрии двусторонних розеток бесконечно, то бесконечно и число групп симметрии двусторонних плоских континуумов.

Двусторонний плоский семиконтинуум можно получить посредством двух взаимно перпендикулярных переносов прямой линии, обладающей той или иной симметрией ленты. В качестве примера плоского двустороннего семиконтинуума можно взять систему тонких натянутых на плоскости равноотстоящих друг от друга проволок.

2.1.3.Континуумы, семиконтинуумы, дисконтинуумы

Теперь возвратимся к фигурам с трехмерной симметрией, но уже как к симметрическим пространствам – трехмерным дисконтинуумам, семиконтинуумам и континуумам.

Уже из философских положений: 1) пространство и время – формы существования материи,2)движение – сущность пространства и времени,3)существуют качественно различные, взаимно превращающиеся виды материи и формы ее движения – вытекают выводы о существовании качественно различных взаимно превращающихся конкретных форм пространства и времени.

Данные о континуумах, семиконтинуумах и дисконтинуумах также подтверждают эти утверждения. Они с новой и очень своеобразной стороны выявляют связь симметрии с пространством и временем.

Очевидно кристаллы в отношении их атомов,ионов и молекул можно рассматривать как дискретные трехмерные пространства – дисконтинуумы.

Помимо дискретных – анизотропных и неоднородных – пространств в теории различают еще и дискретные в одних и непрерывные в других направлениях пространства – семиконтинуумы I и II рода. Семиконтинуумы, будучи явлениями, переходными между континуумами и дисконтинуумами и одновременно их единством, с новых сторон выявляют диалектику пространства.

Пространственные (трехмерные) семиконтинуумы I рода могут быть получены трансляцией плоских континуумов вдоль перпендикуляра к ним. Число групп симметрии пространственных семиконтинуумов I рода бесконечно.Можно привести несколько примеров таких пространств в природе. Они проявляются, например, в так называемых смектических жидких кристаллах. Последние состоят из пленок толщиной в 1-2 молекулы, пленки лежат друг на друге, как листы в стопке бумаги, причем молекулы в них одной своей осью расположены параллельно друг другу, а двумя другими нет. Другие примеры-поле стоячих ультразвуковых волн в жидкости, образованное сгущениями и разряжениями последней, а также однородное световое поле, которое можно рассматривать как семиконтинуум для плоских волн.

Пространственные семиконтинуумы II рода могут быть получены переносом любых из одно- и двусторонних плоскостей, обладающих симметрией бесконечных слоев. Простейшие примеры семиконтинуумов II рода дает практика: с ними мы сталкиваемся при укладке стержней- бревен, труб и т.д.

Перейдем теперь к рассмотрению полностью непрерывных во всех трех направлениях пространств-континуумов. Пространственные континуумы могут быть получены путем трех непрерывных взаимно перпендикулярных переносов элементарных объектов, обладающих симметрией конечных фигур.

Примером симметрических пространственных континуумов являются разнообразные физические поля. Евклидово пространство – также один из примеров таких континнумов. Его можно получить непрерывным «размножением» в трех направлениях точки, обладающей симметрией обыкновенного шара( ∞/∞∙m). Пространство уже обычного электрического поля, в котором направление «вперед» (по силовым линиям) отлично от направления «назад» (против силовых линий), существенно отличается от пространства Евклида. Такой континуум можно получить непрерывным переносом в трех взаимно перпендикулярных направлениях одной точки с симметрией обыкновенного круглого конуса(∞∙m).

Как известно, в теории относительности была впервые выявлена глубокая связь двух фундаментальных континуумов – пространственного и временного. Поэтому особое значение среди различных физических континуумов придается пространственно-временному, описываемому ортохронной группой преобразований Лоренца. Она состоит из: 1) группы вращений в пространственно-временных плоскостях на чисто мнимый угол,2) группы трехмерных вращений, 3) группы пространственной инверсии.

Основной вывод, неизбежно следующий из рассмотрения свойств одно-, дву-, трех-,четырех-,…,n-мерных континуумов, семиконтинуумов и дисконтинуумов, - это вывод о бесконечном – количественном и качественном разнообразии и одно- и двусторонних превращениях, переходах одних реальных пространств и времен в другие.

Эти же выводы подтверждаются и общей теорией относительности, согласно которой в «большом» – в масштабах Метагалактики – реальное пространство- время глубоко неоднородно и неизотропно, хотя в «малом» (например, в масштабах Солнечной ситемы) это пространство-время псевдоевклидово. Однако это подход к малому пространству и времени только с одной точки зрения. Тоже малое даже в бесчисленном множестве «совсем малых» пространств и времен, если его рассматривать уже с позиции геометрической симметрии, вернее кристаллографических аспектов, обнаруживает также бесконечное разнообразие Материалы о плоских и трехмерных реальных континуумах, семиконтинуумах и дисконтинуумах доказывают это совершенно строго.Приведем новые подтверждения развиваемых здесь положений из области квантовой физики твердого тела.

Известно, что все атомы правилбной кристаллической решетки в некотором приближении одинаковы. Они подобны музыкальным струнам, настроенным на одну и ту же частоту, и вследствие этого при возбуждении колебаний в одном из них способны резонировать, что приводит к волне, бегущей через весь кристалл. Природа этих волн может быть очень разнообразной - звуковой, магнитной, электрической и т.д. Согласно общим законам квантовой механики, эти волны возникают и передаются только в виде квантов энергии. Последние во многом аналогичны обычным частицам, и их называют квазичастицами. Поскольку природа их определяется структурой и химическим составом кристаллов, то их разнообразие значительно более широко, чем разнообразие истинных частиц.Сейчас известны такие квазичастицы, как фотоны (кванты звука), электроны проводимости, магноны (спиновые волны), эквитоны, поляритоны (светоэкзитоны) и многие дручие. Важность введения квазичастиц в теорию твердого тела состояла в том, что во многих случаях кристалл оказалось возможным трактовать с позиций невзаимодействующих или слабо взаимодействующих квазичастиц.


Страница: