Экзаменационные вопросы по естествознанию (физика)
Рефераты >> Естествознание >> Экзаменационные вопросы по естествознанию (физика)

ИКИ — применяются для всякого рода тепловых приборов;

видимый свет — используется во всех оптических приборах;

УФИ — применяется в медицине;

Рентгеновское излучение используется вмедицине и в приборах контроля качества изделий;

гамма-лучи — колебания поверхности нуклонов, входящих в состав ядра. используются в парамагнитном резонансе для определения состава и структуры вещества.

24. Изменение полей при движении объектов.

Эффект Доплера и его применение в технике

При движении объекта в каком-либо силовом поле — электрическом, магнитном или электромагнитном восприятие им действий этого поля изменяется. Это связано с тем, что взаимодействие объекта и поля зависит от относительной скорости движения материи поля и объекта, а поэтому не остается постоянной величиной. Наиболее ярко это проявляется в так называемом доплеровском эффекте.

Эффект Доплера — изменение частоты колебаний и длины волны, воспринимаемых приемником колебаний вследствие движения источника волн и наблюдателя относительно друг друга. Основная причина эффекта — изменение числа волн, укладывающихся на пути распространения между источником И приемником.

Доплеровский эффект для звуковых волн наблюдается непосредственно. Он проявляется в повышении тона (частоты) звука, когда источник звука и наблюдатель сближаются и соответственно в понижения тона звука, когда они удаляются.

Доплеровский эффект нашел применение для определения скорости движения объектов — при определении скорости движущейся автомашины, при измерении скорости самолетов, при измерении скоростей сближения или удаления самолетов друг от друга.

В первом случае регулировщик направляет луч переносного радиолокатора навстречу автомашине, и по разности частот посланного и отраженного луча определяет ее скорость.

Во втором случае сам Доплеровский измеритель составляющих скорости устанавливается непосредственно на самолете. Излучаются наклонно вниз три или четыре луча — влево вперед, вправо вперед, влево назад и вправо назад. принимаемые частоты сигналов сравниваются с частотами излучаемых сигналов, разности частот дают представление о составляющей движения самолета по направлению луча, а далее пересчетом полученной информации с учетом положения лучей относительно самолета высчитываются скорость и угол сноса самолета.

В третьем случае в радиолокаторе, установленном на самолете, определяются не только дальность до другого самолета, как в обычных радиолокаторах, но еще и Доплеровский сдвиг частот, что позволяет не только знать расстояние до другого самолета (цели), но и его скорость. На фоне такой способ позволяет отличить движущуюся цель от неподвижной.

Применение эффекта Доплера совместно со спектрометрами в астрономии позволяет получать большой объем информации о поведении далеких от нас звездных объектов и образований.

25. Квантовые явления в физических средах.

Квантовые генераторы: физическая сущность,

виды и особенности лазеров, области применения

В различных средах, особенно в так называемых “активных” средах имеются квантовые эффекты, которые с успехом могут быть использованы в прикладном плане. Так например в результате накачки атомов активной среды внешней электрической или световой энергией электроны в среде переводятся на более высокий уровень, чем они находятся в обычном состоянии, а затем уже самопроизвольно перебрасываются на нижний уровень, испуская электромагнитную волну строго определенной частоты. При этом испускание фотонов света частью атомов стимулирует механизм испускания фотонов другими атомами, получается лавинный процесс, в котором все испускаемые фотоны синфазируются друг с другом. На это основан принцип действия квантовых генераторов.

Квантовый генератор — это генератор электромагнитных волн, в котором использовано явление вынужденного излучения. Квантовый генератор радио-диапазона сверхвысоких частот (СВЧ) так же как и квантовый усилитель этого диапазона часто называют мазером. Первый квантовый генератор был создан в диапазоне СВЧ в 1955 г. одновременно в СССР (Н. Г. Басов и А. М. Прохоров) и в США (Ч. Таунс). В качестве активной среды а нем использовался пучок молекул аммиака. Поэтому он получил название молекулярного генератора. В дальнейшем был построен квантовый генератор на пучке атомов водорода, стабильность частоты в нем составляла 10-13, в силу чего такие генераторы используются как стандарты частоты для целей высокоточного измерения вре­мени.

Квантовые генераторы оптического диапазона — лазеры появились в 1960 г. Лазеры работают в широком диапазоне длин волн от ультрафиолетовой до субмиллиметровой областей спектра, в импульсном и непрерывном режимах. Существуют лазеры на кристаллах и стеклах, газовые, жидкостные и полупроводниковые. В отличие от других источников света лазеры излучают высококогерентные монохроматические световые волны, вся энергия которых концентрируется в очень узком телесном угле.

Первый лазер был создан в США с использованием монокристалла рубина. Источником накачки была лампа-вспышка. Эти лазеры в дальнейшем оказались рекордсменами в части энергии импульса. При средней энергии из­лучения в 3 Дж вследствие очень короткого импульса в 1-10 нс, получается мощность одного импульса, исчисляемая миллиардами Вт.

Затем были созданы газовые лазеры, работающие на смели гелия и неона, а затем полупроводниковые. В газовых лазерах накачка происходит за счет газового разряда в рабочем теле. Особенно перспективен для юстировочных и нивелировочных работ газодинамический лазер на СО2.

В полупроводниковых лазерах накачка происходит за счет инжекции (проникновения) носителей тока через электронно-дырочный переход. Полупроводниковые лазеры отличает высокий кпд и относительная большая мощность непрерывного излучения.

Применение лазеров очень широкое — считывание информации с оптических носителей, измерение дальности (впервые с помощью установленного на Луне уголкового отражателя было измерено расстояние до Луны с точностью 1,5 м), обработка материалов и др. Лазеры нашли применение в микробиоло­гии, медицине, фотохимии, катализе, топографии и пр.

26. Квантовые эффекты в микромире. Понятие о спектрах

излучения и поглощения, спектрометрия

Излучение и поглощение электромагнитных волн атомами вещества подчиняется квантовым законам. В частности, оптическое излучение возникает при квантовых переходах между уровнями энергии атомов, молекул, а также твердых и жидких тел. При этом излучение характеризуется определенным спектром - набором частот электромагнитных волн. Спектры испускания соответствуют квантовым переходам с верхних уровней энергии на нижние, спектры поглощения — с нижних на верхние.

Оптические спектры — эго спектры электромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазона шкалы электромагнитных волн. Оптические спектры разделяют на спектра испускания (излучения), спектры поглощения, рассеяния и отражения.


Страница: