Множина комплексних чисел
Рефераты >> Математика >> Множина комплексних чисел

z=|z| Отметим, что модуль комплексного числа являет­ся неотрицательным действительным числом.

Аргументом комплексного числа z = x + iy назы­вают величину угла φ наклона радиус-вектора к положительной полуоси Ox. Аргумент комплексного числа z обозначают так: Argz. При изменении z этот угол может принимать любые действительные значения (как положительные, так и отрицательные; последние отсчитываются по часо­вой стрелке). Если модули двух комплексных чисел равны, а значения угла φ отличаются друг от друга на 2π, или на число, кратное 2π, то точки, соответст­вующие этим комплексным числам, совпадают; комп­лексные числа в этом случае равны между собой. Следовательно, аргумент комплексного числа z имеет бесконечное множество значений, отличающихся друг от друга на число, кратное 2π. Аргумент не опре­делен лишь для числа 0, модуль которого равен нулю: |0| =0. Среди значений аргумента комплексного чи­сла z0 существует одно и только одно значение, за­ключенное между —π, +π, включая последнее значение. Его называют главным значением аргумен­та и обозначают argz. Итак, модуль и аргумент комплексного числа z удовлетворяют следующим соотношениям:

|z|0, -π < argz π, Argz = argz + 2πn (n = 0, 1, 2, …).

Главное значение аргумента положительного действительного числа равно 0, главное значение аргумента действительного отрицательного числа равно π, главное значение аргумента мнимого числа bi (b > 0) равно π/2, главное значение аргумента мнимого числа –bi (b > 0) равно –π/2.

Выразим действительную и мнимую части комп­лексного числа z = x + iy через его модуль и аргу­мент. Пусть точка z изображает число z = x + iy (рис. 2). Из прямоугольного треугольника ОAz получаем

x = r cosφ, y = r sinφ, (19)

где r = |z|. Отсюда и из формул (17), (18) следует:

cosφ = , sinφ = , tgφ = .

Например: 1) найдём аргумент числа z = 1 – i. Так как Re z = 1, Im z = -1, то точка z = 1 – i лежит в IV четверти. Поэтому достаточно найти такое решение одного из последних уравнений , которое является углом в IV четверти. Рассмотрим уравнение cosφ = . Находим

cos φ = , φ = + 2kπ (k = 0, 1, 2, …);

2) найдём аргумент числа -1- i. Точка -1-i лежит в III четверти. Найдём такое решение уравнения tg φ = , которое является углом в III четверти. Находим

tg φ = 1, φ = + 2kπ (k = 0, 1, 2, …).

Тригонометрическая форма комплексного числа

Рассмотрим комплексное число

z = x + iy. (20)

Подставляя сюда выражения для x и y через модуль и аргумент комплексного числа (см. форму­лы (19)), получаем z = r cosφ + ir sinφ, или

z = r (cosφ + isinφ) (r0). (21)

Запись комплексного числа z в виде (21) называют тригонометрической формой этого числа.

Замечание. Не всякая запись комплексного числа через тригонометрические функции является тригонометрической формой этого числа. Например, запись числа ί в виде

i = cos + isin, или i = (-1)(cos + isin)

не является тригонометрической формой числа i: в первом случае у косинуса и синуса разные аргу­менты, во втором - имеется отрицательный множи­тель. Поскольку аргументами комплексного числа i являются числа π/2 + 2kπ (k = 0, ±1, ±2, .) и только они, и |i| = 1, то тригонометрическая форма числа i имеет вид

i = cos ( + 2kπ) + isin ( + 2kπ) (k – любое целое число).

Очевидно, что

r (cosφ + isinφ) = r (cos(φ +2kπ) + isin(φ +2kπ)).

Два комплексных числа, заданных в тригоно­метрической форме, равны тогда и только тогда, когда их модули равны, а аргументы отличаются на величину, кратную 2π. Следовательно, если

r1 (cosφ1 + isinφ1) = r2 (cosφ2 + isinφ2), (22)

то

r1 = r2, φ2 = φ1 + 2kπ (k = 0, ±1, ±2, .). (23)

Если комплексное число z = x + iy задано в три­гонометрической форме (21), то комплексное число = x – iy записывается в форме

= r (cos(-φ) + isin(-φ)),

поэтому

|z| = ||, argz = -arg,

т. е. при переходе от числа z к комплексно сопряженному числу модуль не меняется, а аргу­мент изменяет лишь знак (см. рис. 2).

Покажем, как умножать и делить комплексные числа, заданные в тригонометрической форме. Пусть даны два комплексных числа

z1 = r (cosφ + isinφ) , z2 = ρ (cosψ + isinψ), (24)

где r = |z1|, φ = Argz1, ρ = |z2|, ψ = Argz2.

Пользуясь правилами действий над комплексны­ми числами в алгебраической форме, находим

z1z2 = r (cosφ + isinφ) ρ(cosψ + isinψ) = rρ(cosφcosψ + icosφsinψ + isinφcosψ + i2sinφsinψ ) = rρ(cosφcosψ – sinφsinψ) + i(cosφsinψ + sinφcosψ)),

или

z1z2 = rρ (cos(φ + ψ) + isin(φ + ψ) ). (25)

Из полученной тригонометрической формы произ­ведения двух комплексных чисел следует, что

|z1z2| = rρ или |z1z2| = |z1| |z2|, (φ + ψ) = Arg(z1z2),

т. е. модуль произведения равен произведению модулей множителей, а сумма аргументов множителей является аргументом произведения.

Предположив, что z20, т. е. ρ0, найдем частное двух комплексных чисел z1 и z2 , заданных формулами (24):

или

. (26)

Из формулы (26) следует, что

, или ; (27)

φ – ψ = Arg. (28)

Формула (27) означает, что модуль частного равен модулю делимого, деленному на модуль де­лителя. Формула (28) показывает, что разность аргументов делимого и делителя является аргу­ментом частного двух комплексных чисел.

Формула (26) позволяет найти модуль и аргумент комплексного числа, обратного данному числу. Полагая в этой формуле z1 = l = l (cos0 + isin0), z2 = z = r (cosφ + isinφ), получаем

z-1 = = (cos(0-φ) + isin(0-φ)),

z-1 = r-1 (cos(-φ) + isin(-φ)), (29)

откуда |z-1| = r-1, argz-1 = -φ, т. е.

|z-1| = |z|-1, argz-1 = -argz.

Таким образом, модуль комплексного числа z-1, обратного числу z, равен обратной величине модуля числа z, а его главное значение аргумента отлича­ется от главного значения аргумента z лишь знаком.

Рассмотрим вопрос о возведении в степень комплексного числа z = r(cos φ + isin φ), заданного в три­гонометрической форме. Если n — целое положитель­ное число, то с помощью формулы (25) получаем следующую формулу

zn = (r (cosφ + isinφ))n = rn (cosnφ + isinnφ), (30)

откуда |zn| = rn, Arg zn = nφ.

Итак, при возведении комплексного числа в натуральную степень модуль возводится в ту же степень, а аргумент умножается на показатель степени.

Формула (30) справедлива и для целых отрица­тельных показателей. В самом деле, так как z-n = (z-1)n , то достаточно применить формулу (30) к числу z-1, тригонометрическая форма которого определяется формулой (29).

Формулу (30) называют формулой Муавра. В частном случае, при r = 1, из этой формулы получаем

(cos φ + isin φ)n = cos nφ + isin nφ.

ю;

Извлечение корня n-й степени из комплексного числа

Извлечь корень n-й степени из комплек­сного числа z – это значит найти такое комплексное число α, что αn = z. Представим числа z и α в три­гонометрической форме: z = r (cosφ + isinφ), α = ρ (cosψ + isinψ), где r = |z|, φ = Argz; ρ = |α|, ψ = Αrgα. Обозначим корень n-й степени из комплексного числа z через , тогда по определению

.

.

Применяя формулу (30), получаем

.

На основании формул (22) и (23) из этого ра­венства следует, что

ρn = r, nψ = φ + 2kπ (k = 0, ± 1, ± 2, …), откуда

, (k = 0, ± 1, ± 2, …). (31)

Полученные формулы определяют модуль ρ и аргумент числа α – корня степени n из комплексного числа z. Обратно, если дано комплексное число , то при любом целом k,положительном или отрицательном, n-я степень этого числа равна числу z = r(cosφ + isinφ). Итак,

, (32)

где - арифметическое значение корня из дейст­вительного неотрицательного числа, k – любое целое число. Так как k может принимать любые значения (положительные и отрицательные), то может пока­заться, что корень n-й степени из комплексного числа z имеет бесконечное множество различных значений. На самом деле различных значений будет только n. Полагая

k = 0, 1, 2, … , n – 1, (33)

получаем следующие n значений корня:

,

,

, (34)

……………………………….

.

Докажем, что среди значений αi (i = 0, 1, . , n – 1) нет равных между собой. Пусть p и q – любые различные числа из чисел k = 0, 1, 2, . , n – 1, тогда

.

Поскольку не является целым числом (p < n, q < n), то число 2π не будет кратным 2π. Та­ким образом, комплексные числа

,

не равны между собой, потому что разность их аргументов не будет кратной 2π (см. (22) и (23)).

Предположим, что k – любое натуральное число, большее n – 1. Пусть k = nq + r, где 0 ≤ r ≤ n – 1, тогда , т. е. значение аргумента при этом значении k отли­чается от значения аргумента при k = r на число, кратное 2π. Следовательно, при этом значении k по­лучаем такое же значение корня, как и при k = r, т. е. при значении k=0, 1, 2, ., n – 1.

Таким образом, извлечение корня n-й степени из комплексного числа z всегда возможно и дает n различных значений, определяемых формулами (34). Из этих формул видно, что все n значений корня n-й степени из комплексного числа z расположены на окружности радиуса с центром в точке нуль и делят эту окружность на n равных частей.

Отметим, что корень n-й степени из действитель­ного числа a также имеет n различных значений. Среди этих значений действительных будет два, одно или ни одного, в зависимости от знака a и чет­ности n. Корень n-й степени из нуля имеет только одно значение, равное нулю, т. е. .

Рассмотрим важный частный случай извлечения корня, а именно извлечения корня n-й степени из числа 1. Представляя это число в тригонометри­ческой форме 1=cos0+isin0 и применяя форму­лу (34), получаем n значений корня из единицы:

, k = 0, 1, 2, … , n – 1. (35)

На комплексной плоскости корни n-й степени из единицы изображаются точками, расположенными на окружности радиуса R = 1 и делящими ее на n равных дуг. Одной из таких точек будет точка, изображающая число 1.

Например: найдем все значения корня шестой степени из единицы. По формуле (35), которая в данном случае принимает вид

, k = 0, 1, 2, 3, 4, 5,

получаем шесть следующих значений:

α1

α2

α0

α3

0

x

y

α4

α5

Рис. 3

Эти значения изображаются вершинами правиль­ного шестиугольника, вписанного в единичную окружность (рис. 3).

Где применяются комплексные числа?

В течение последних двухсот лет комплексные числа находят многочисленные, а иногда и совершенно неожиданные применения. Так, например, с помощью комплексных чисел Гаусс на­шел ответ на чисто геометрический вопрос: при каких натуральных n циркулем и линейкой можно по­строить правильный n-угольник? Из школьного кур­са геометрии известно, как циркулем и линейкой по­строить некоторые правильные многоугольники: правильный треугольник, квадрат, правильный шестиугольник (его сторона равна радиусу описан­ной около него окружности). Более сложным являет­ся построение правильных пятиугольника и пятнадцатиугольника. Научившись строить эти правильные многоугольники, легко перейти к построению соответ­ствующих многоугольников с удвоенным числом сторон: восьмиугольника, десятиугольника и т. п. Все эти задачи на построение были решены еще в Древней Греции. Однако, несмотря на огромные усилия мно­гих замечательных древнегреческих геометров и дру­гих ученых, никому не удалось построить ни правиль­ный семиугольник, ни правильный девятиугольник. Не удалось также осуществить построение пра­вильного р-угольника ни при каком простом числе р, кроме p = 3 и p = 5. Более двух тысяч лет никто не мог продвинуться в решении этой проблемы. В 1796 г. Карл Фридрих Гаусс, 19-летний студент-математик Геттингенского университета, впервые доказал воз­можность построения правильного семнадцатиугольника с помощью циркуля и линейки. Это было одно из самых удивительных открытий в истории матема­тики. В течение нескольких последующих лет Гаусс полностью решил проблему построения правильных n-угольников.

Гаусс доказал, что правильный N–угольник с не­четным числом сторон (вершин) может быть по­строен с помощью циркуля и линейки тогда и только тогда, когда число N является простым числом Ферма или произведением нескольких различных простых чисел Ферма. (Числами Ферма называют числа вида Fn = + 1 · При n = 0, 1, 2, 3, 4 эти числа являются простыми, при n = 5 число F5 будет состав­ным. Из этого результата следовало, что построение правильного многоугольника невоз­можно при N = 7, 9, 11, 13.

Легко заметить, что задача о построении пра­вильного n-угольника равносильна задаче о делении окружности радиуса R = 1 на n равных частей. Выше было показано, что корень n-й степени из единицы имеет точно n значений; почти все эти значения (за исключением одного, двух) являются комплексны­ми. Точки, изображающие корни n-й степени из еди­ницы, располагаются на окружности радиуса R = 1 и делят ее на n равных дуг, т. е. являются вершина­ми правильного n-угольника, вписанного в эту окруж­ность (см. рис. 3). При доказательстве возможности построения правильного 17-угольника Гаусс поль­зовался свойствами корней 17-й степени из единицы.

D

D'

0'

v

u

0

y

x

В XVIII в. возникла новая область математики – теория функций комплексной переменной. Введем по­нятие такой функции. Рассмотрим две комплексные переменные z = x + iy и w = u + iv, где x, y, u, v – действительные переменные, i = - мнимая еди­ница. Зафиксируем две комплексные плоскости Oxy (плоскость z), O'uv (плоскость w) с выбранными на них системами прямоугольных координат и два множества на этих плоскостях: D и D' соответствен­но (рис. 4).

Рис. 4

Если каждой точке zD по некоторому закону f ставится в соответствие единственная точка wD', то говорят, что w есть функция от z и пишут: w = f(z). Множество D в этом случае называют об­ластью определения функции w = f(z), значения кото­рой принадлежат области D'. Если множество значе­ний f(z) исчерпывает все множество D', то D' называ­ют множеством значений (областью изменения) функции f(z). B таком случае пишут: D'= f(D). Мно­жества D и D' можно изображать на одной комплекс­ной плоскости. Каждое из множеств D и D' может совпадать со всей плоскостью.

Таким образом, каждая комплексная функция реализует однозначное в одну сторону отображение одного множества на другое. Благодаря этому комплексные функции находят важные применения таких науках, как гидродинамика и аэродинами­ка, поскольку с их помощью удобно описывать дви­жение объема жидкости (или газа).

С помощью теории функций комплексной пере­менной доказана следующая важная теорема, которую долгое время называли основной теоремой алгебры.

Теорема: Всякий многочлен с любыми число­выми коэффициентами, степень которого не меньше единицы, имеет хотя бы один корень, в общем случае комплексный.

Рассмотрим многочлен степени n (n ≥ 1):

f(x) = a0xn + a1xn-1 + … + an-1x + an . (36)

Корнем многочлена называют такое число с (в об­щем случае комплексное: с = a + bi), которое обра­щает данный многочлен в нуль:

a0cn + a1cn-1 + … + an-1c + an ≡ 0.

Другими словами, теорема утверждает, что алге­браическое уравнение n-й степени (n ≥ 1)

a0xn + a1xn-1 + … + an-1x + an = 0 37)

имеет хотя бы один корень.

Отсюда следует, что любое алгебраическое урав­нение n-й степени имеет ровно n корней. Действи­тельно, если многочлен f(х) = a0xn + a1xn-1 + … + an-1x + an , имеет корень α1, то его можно пред­ставить в виде f(х) = (х – α1)φ1(x), где φ1(x) – много­член степени n – 1. Этот многочлен по данной теоре­ме имеет хотя бы один корень. Обозначим корень многочлена φ1(x) через α2, тогда φ1(x) = (х – α2)φ2(x), где φ2(x) – многочлен степени n – 2. Продолжая аналогичные рассуждения, находим, что f(x) = a0(x – a1)(x – a2) .(x – an). Отсюда видно, что f(αi) = 0 при i – 1, 2, . , n, т. е. αi — корни многочлена (36) или уравнения (37). Таким образом, уравне­ние (37) имеет n корней.

Отметим, что комплексные корни всякого много­члена с действительными коэффициентами всегда сопряжены: если с = a - bi – корень уравнения, то с = а-bi – также корень данного уравнения. Ины­ми словами, комплексные корни такого многочлена входят парами во множество его корней. Отсюда следует, что любое алгебраическое уравнение не­четной степени имеет хотя бы один действительный корень.

Замечание. Не всякое уравнение имеет корни, действительные или комплексные. Например, транс­цендентное (неалгебраическое) уравнение аx = 0 (а > 0) не имеет никаких корней (ни действительных, ни комплексных).

x

0

Рис. 6

Рис. 5

w = z + c

c

z

y

x

0

Простейшим примером функции комплексной переменной является линейная функция w = z + c, где с – постоянная (комплексное число). Эта функ­ция осуществляет преобразование плоскости z на плоскость w. Каждой точке z она ставит в соответ­ствие точку w = z + с. Очевидно, от точки z можно перейти к точке w путем сдвига (параллельного пе­реноса) на вектор с, т. е. посредством перемещения точки z по направлению вектора с на расстояние, равное длине этого вектора (рис. 5). Путем подхо­дящего выбора числа с можно получить любой сдвиг. Например, если точку z нужно сдвинуть в положи­тельном направлении оси Ox на две единицы, то надо взять с = 2; точка w = z + 2 будет искомой (рис. 6). Если же точку z нужно сдвинуть в отрицательном направлении оси Oy на три единицы, то берем c = -3i; точка w'= z + (-3i) = z – 3i будет искомой (рис. 6). Итак, функция w = z + c осуществляет преобразование (отображение) плоскости, которое называют сдвигом на вектор с.

2

1

w' = z – 3i

z

w = z + 2

y

Геометрическое преобразование, при котором ве­личины углов между любыми двумя линиями, содер­жащимися в преобразуемой фигуре, не изменяются, называют конформным преобразованием или кон­формным отображением. (Под углом между двумя линиями, пересекающимися в некоторой точке, по­нимают угол между касательными к этим линиям, проведенными в этой точке.) Примерами конформ­ных отображений могут служить сдвиг (параллель­ный перенос), гомотетия и поворот. Таким образом, можно сказать, что функция w = z + с осуществляет конформное отображение; это одна из таких функций.

Теория функций комплексной переменной находит широкое применение при решении важных практи­ческих задач картографии, электротехники, тепло­проводности и др. Во многих вопросах, где речь идет, например, об электрическом потенциале в точ­ках пространства, окружающего заряженный кон­денсатор, или о температуре внутри нагретого тела, о скоростях частиц жидкости или газа в потоке, дви­жущемся в некотором канале и обтекающем при этом некоторые препятствия, и т. п., нужно уметь находить потенциал, температуру, скорости и т. п. Задачи такого рода могут быть решены без особых затруд­нений в случае, когда встречающиеся в них тела имеют простую форму (например, в виде плоских пластин или круговых цилиндров). Однако расчеты необходимо уметь производить и во многих других случаях. Например, чтобы сконструировать самолет, надо уметь вычислять скорости частиц в потоке, обтекающем крыло самолета. Разумеется, при полете самолета движутся и частицы воздуха, и само крыло. Однако, опираясь на законы механики, исследование можно свести к случаю, когда крыло неподвижно, а на него набегает и обтекает его поток воздуха. Крыло самолета в поперечном

а

разрезе, (профиль крыла) имеет вид, показанный на рисунке 7. Расчет ско­ростей производится достаточно просто, когда по­перечный разрез обтекаемого тела есть круг (т. е. само тело является круглым цилиндром). Чтобы свести задачу о скоростях частиц потока воздуха, обтекающего крыло самолета, к более простой задаче обтекания круглого цилиндра, достаточно конформно отобразить часть плоскости, заштрихованную на ри­сунке 7, а (вне крыла), на другую фигуру, заштрихо­ванную на рисунке 7, б (вне круга). Такое ото­бражение осуществляется с помощью некоторой фун­кции комплексной пере­менной.

б

Знание этой фун­кции позволяет перейти от скоростей в потоке, обте­кающем круглый

Рис. 7

цилиндр, к скоростям в


Страница: