Методы решения уравнений в странах древнего мира
Рефераты >> Математика >> Методы решения уравнений в странах древнего мира

Почему Диофант делает предположение, что t==2s—2, он не объясняет. Во всех своих задачах (в дошедших до нас шести книгах его их 189) он делает то или другое предположение, не давая никакого обоснования.

Вообще содержание 6 книг таково:

В «Арифметике» 189 задач, каждая снабжена одним или несколькими решениями. Задачи ставятся в общем виде, затем берутся конкретные значения входящих в нее ве­личин и даются решения.

Задачи книги I в большинстве определенные. В ней имеются и такие, которые решаются с помощью систем двух уравнений с двумя неизвестными, эквивалентных квадратному уравнению. Для его разрешимости Диофант выдвигает условие, чтобы дискриминант был полным квадратом. Так, задача 30— найти таких два числа, чтобы их разность и произведение были заданными числами,— приводится к системе

х — у = а, х = b.

Диофант выдвигает «условие формирования»: требуется, чтобы учетверенное произведение чисел, сложенное с квад­ратом разности их, было квадратом, т. е. 4b + а2 = с2.

В книге II решаются задачи, связанные с неопределен­ными уравнениями и системами таких уравнений с 2, 3, 4, 5, 6 неизвестными степени не выше второй.

Диофант применяет различные приемы. Пусть необхо­димо решить неопределенное уравнение второй степени с двумя неизвестными f2 (х, у) ==0. Если у него есть ра­циональное решение (x0, y0), то Диофант вводит подста­новку

x = x0 + t,

y = y0 + kt,

в которой k рационально. После этого основное уравнение преобразуется в квадратное относительно t, у которого свободный член f2 ( x0, у0) = 0. Из уравнения получается t1 == 0 (это значение Диофант отбрасывает), t2 — рацио­нальное число. Тогда подстановка дает рациональные х и у.

В случае, когда задача приводилась к уравнению у2 = ax2 + bx + с, очевидно рациональное решение x0 = О,y0=±C. Подстановка Диофанта выглядит так:

x = t,

y = kt ± c

Другим методом при решении задач книги II Диофант пользовался, когда они приводили к уравнению у2 == = a2x2 + bx + с. Он делал подстановку

x= t,

y = at + k,

после чего х и у выражались рационально через параметр k:

Диофант, по существу, применял теорему, состоящую в том,; что если неопределенное уравнение имеет хотя бы одно рациональное решение, то таких решений будет бес­численное множество, причем значения х и у могут быть представлены в виде рациональных функций некоторого параметра»

В книге II есть задачи, решаемые с помощью «двойного неравенства», т. е. системы

ах + b = и2,

сх + d == v2.

Диофант рассматривает случай а = с, но впоследствии пишет, что метод можно применить и при а : с = т2, Когда а == с, Диофант почленным вычитанием одного ра­венства из другого получает и2 —и2 = b — d. Затем раз­ность b — d раскладывается на множители b — d = п1 и приравнивает и + v = I, и — v = п, после чего нахо­дит

и = (I + п)/2, v = (I - n)/2, х - (l2 + п2}/4a - {b + d)/2a.

Если задача сводится к системе из двух или трех урав­нений второй степени, то Диофант находит такие рацио­нальные выражения неизвестных через одно неизвестное и параметры, при которых все уравнения, кроме одного, обращаются в тождества. Из оставшегося уравнения он выражает основное неизвестное через параметры, а затем находит и другие неизвестные.

Методы, разработанные в книге II, Диофант применяет к более трудным задачам книги III, связанным с системами трех, четырех и большего числа уравнений степени не выше второй. Он, кроме того, до формального решения задач проводит исследования и находит условия, которым должны удовлетворять параметры, чтобы решения сущест­вовали.

В книге IV встречаются определенные и неопределен­ные уравнения третьей и более высоких степеней. Здесь дело обстоит значительно сложнее, потому что, вообще говоря, неизвестные невозможно выразить как рациональ­ные функции одного параметра. Но, как и раньше, если известны одна или две рациональные точки кубической кривой fз (х, у) == 0, то можно найти и другие точки. Диофант при решении задач книги IV применяет новые методы»

Книга V содержит наиболее сложные задачи; некоторые из них решаются с помощью уравнений третьей и четвер­той степеней от трех и более неизвестных. Есть и такие, в которых требуется разложить данное целое число на сум­му двух, трех или четырех квадратов, причем эти квадра­ты должны удовлетворить определенным неравенствам.,

При решении задач Диофант дважды рассматривает урав­нение Пелля ax2 + 1 = у2.

Задачи книги VI касаются прямоугольных треуголь­ников с рациональными сторонами. К условию х2 + у2 == z2 в них добавляются еще условия относительно площа­дей, периметров, сторон треугольников.

В книге VI доказывается, что если уравнение ax2 + b == у2 имеет хотя бы одно рациональное решение, то их будет бесчисленное множество. Для решения задач книги VI Диофант применяет все употребляемые им спо­собы.

Кстати, в одном из древних рукописных сборников задач в стихах жизнь Диофанта описывается в виде следующей алгебраиче-юй загадки, представляющей надгробную надпись на его могиле

Прах Диофанта гробница покоит; дивись ей—и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком.

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Задача-загадка сводится к составлению и решению уравнения:

откуда х = 84 = вот сколько лет жил Диофант.

Неопределённое уравнение x2 + y2 = z2

Такое неопределённое уравнение исследовали пиффагорийцы, целые решения которого поэтому называют «пифагоровыми тройками», они нашли бесконечно много таких троек, имеющих вид:

Кубические уравнения

Более систематическое исследование задач, эквивалентных кубическим уравнениям, относится только к эпохе эллинизма. Архимед в сочи­нении «О шаре и цилиндре» (книга II, предложение 4) свел задачу о рас­сечении шара плоскостью на два сегмента, объемы которых имели бы за­данное отношение т : п (т > п), к нахождению высоты х большего сегмен­та из пропорции

(1)

где а — радиус шара.

Архимед обобщает задачу: рассечь заданный отрезок а на две части х и а—х так, чтобы

(а — х) : с = S : х2, (2)

где с и S — заданные отрезок и площадь.

Заметив, что при такой общей постановке задача не всегда разрешима (имеются в виду только положительные действительные решения), Архи­мед приступает к ее исследованию с тем, чтобы наложить ограничения на с и S. Он говорит, что изложит полное решение задачи «в конце», однако соответствующее место не сохранилось. Жившие на столетие позже Архи­меда греческие геометры Диокл и Дионисодор уже не знали его. Они предложили собственные, гораздо более сложные решения, но никто из них не сумел провести анализ общего случая.


Страница: