Самостоятельная работа как средство обучения решению уравнений в 5-9 классах
Рефераты >> Педагогика >> Самостоятельная работа как средство обучения решению уравнений в 5-9 классах

В зависимости от средств, которые используются при преобразованиях, в этом типе можно выделить два подтипа: преобразования, осуществляемые при помощи арифметических операций и при помощи логических операций. Первые можно назвать арифметическими преобразованиями логической структуры, вторые — логическими преобразованиями логической структуры.

Наиболее важными для школьного курса математики арифметическими преобразованиями логической структуры являются:

а) Переход от уравнения a * b=0 к совокупности уравнений а=0, b=0.

Сюда же относятся сходные преобразования для уравнений вида ,

б) Переход от системы уравнений к одному уравнению посредством почленного сложения, вычитания, умножения или деления уравнений, входящих в систему.

Приведем примеры логических преобразований логической структуры:

а) Выделение из системы уравнений одного из компонентов. Например,

при решении системы уравнений способом подстановки можно

в качестве первого шага рассмотреть первое из уравнений (это и будет преобразование данного типа, условно его, можно изобразить так: АÙВ——>А). Смысл такого преобразования в том, что выделенное уравнение можно подвергать дальнейшим преобразованиям независимо от той системы, в которую оно входит.

б) Замена переменных. В простейшем случае замена переменных состоит

в переходе от уравнения F (f (x))=0 к системе Связь этой системы

и данного уравнения такова: число Х0 — решение уравнения F (f (х))=0 тогда и только тогда, когда пара (х0, f (х0)) — решение системы. Это преобразование позволяет одно «сложное» уравнение заменить системой более простых уравнений. Так решаются биквадратные уравнения, многие типы иррациональных и трансцендентных уравнений (например, при их сведении к алгебраическим уравнениям).

в) Преобразование, противоположное замене переменных, т. е. переход от

системы вида к уравнению F (х, f (х))=0.

Корни этого уравнения и решения данной системы связаны так же, как при замене переменной. Это преобразование назовем подстановкой.

На основе подстановки в процессе обучения алгебре вводится стандартный метод решения системы уравнений с двумя неизвестными: в одном из уравнений одно из неизвестных выражается через другое, полученную при этом систему решают методом подстановки. Этот метод превращается в дальнейшем в курсе школьной алгебры в универсальный метод уменьшения количества неизвестных в системе.

г) Укажем еще на преобразования, основанные на тождественно истинных формулах алгебры логики, имеющих вид равносильности или логического следования. Преобразования эти весьма многочисленны, но в практике школьного обучения используются редко. Приведем пример такого преобразования. При решении уравнения 2x+3|x|=l можно в соответствии с определением модуля рассмотреть случаи х ³ 0 или х<0, т. е. решить систему

В процессе решения логическая структура этой системы преобразуется к виду совокупности двух систем:

или

Таким образом, происходит изменение логической структуры, осуществляемое по схеме A /\(В\/ С) —> (A /\В)\/(А /\С}.

Изучение и использование преобразований уравнений и их систем, с одной стороны, предполагают достаточно высокую логическую культуру учащихся, а с другой стороны, в процессе изучения и применения таких преобразований имеются широкие возможности для формирования логической культуры. Большое значение имеет выяснение вопросов, относящихся к характеризации производимых преобразований: являются ли они равносильными или логическим следованием, требуется ли рассмотрение нескольких случаев, нужна ли проверка? Сложности, которые приходится здесь преодолевать, связаны с тем, что далеко не всегда возможно привести характеризацию одного и того же преобразования однозначно: в некоторых случаях оно может оказаться, например, равносильным, в других равносильность будет нарушена.

В итоге изучения материала линии уравнений учащиеся должны не только овладеть применением алгоритмических предписаний к решению конкретных заданий, но и научиться использовать логические средства для обоснования решений в случаях, когда это необходимо.

4. Логические обоснования при изучении уравнений.

При изучении материала линии уравнений значительное внимание уделяется вопросам обоснования процесса решения конкретных заданий. На начальных этапах изучения курса алгебры и в курсе математики предшествующих классов эти обоснования имеют эмпирический, индуктивный характер. По мере накопления опыта решения уравнений, систем различных классов все большую роль приобретают общие свойства преобразований. Наконец, достигнутый уровень владения различными способами решения позволяет выделить наиболее часто используемые преобразования (равносильность и логическое следование). Учебные пособия по алгебре имеют существенные различия в отношении описанных способов обоснования. Тем не менее выделяются все указанные направления, причем в общей для них последовательности. Кратко рассмотрим каждое из этих направлений.

Эмпирическое обоснование процесса решения. Таким способом описываются приемы решения первых изучаемых классов уравнений. В частности, это характерно для уравнений 1-й степени с одним неизвестным. Методика изучения этих уравнений состоит в предъявлении алгоритма решения таких уравнений и разборе нескольких типичных примеров.

Указанный алгоритм формируется, естественно, далеко не сразу. Перед этим разбирается несколько примеров, причем цель рассмотрения состоит в выделении в последовательности действий нужных для описания алгоритма операций. Объяснения учителя могут быть такими: «Нужно решить уравнение 5x+4=3x+10. Постараемся все члены, содержащие неизвестное, собрать в одной части, а все члены, не содержащие неизвестное,— в другой части уравнения. Прибавим к обеим частям уравнения число (—4), данное уравнение примет вид 5х=3x+10—4. Теперь прибавим к обеим частям уравнения (—3х), получим уравнение 5х—3x=10—4. Приведем подобные члены в левой части уравнения, а в правой вычислим значение выражения; уравнение примет вид 2х=6. Разделим обе части уравнения на 2, получим х=3». Этот рассказ сопровождается последовательно возникающей на доске записью преобразований:

5х+4=3х+10

5х=3х+10—4

5х—3х=10—4

…………… .

Анализируя решение, учитель может прийти к правилам решения уравнений 1-й степени с одним неизвестным. Обратим внимание на некоторые формальные пробелы этого изложения. Прежде всего, в таком рассказе не акцентируется внимание на том, что под действием преобразований уравнение преобразуется в некоторое новое уравнение. Ученики как бы имеют дело все время с тем же уравнением. Если бы упор делался непосредственно на переход от одного уравнения к другому, то это потребовало бы более внимательного анализа представлений, связанных с равносильностью, что как раз не характерно для первых этапов обучения алгебре.


Страница: