Марс

Для атмосферы Марса характерно низкое относительное содержание водяного пара, на уровне сотых и тысячных долей процента. Около 80% количества H2O сосредоточено в приповерхностном слое атмосферы толщиной в несколько километров. Содержание водяного пара в зависимости от сезона, широты и времени суток колеблется в сто раз. Наиболее сухая атмосфера - в высоких широтах зимой, а наиболее влажная - над полярными областями летом. На Марсе обнаружены также отдельные районы повышенной влажности в средних широтах и общее уменьшение влагосодержания в атмосфере в период пылевой бури.

В разреженной атмосфере Марса тепловые неоднородности у поверхности резко выражены, и температурный профиль испытывает значительные сезонно-суточные изменения, достигающие 100-150 K. С высотой глубина вариаций сильно уменьшается. За среднее давление, примерно соответствующее среднеуровенной поверхности Марса, принято 6,1 мбар. Оно совпадает с положением тройной точки на фазовой диаграмме воды. В зависимости от рельефа давление колеблется от ~2 до ~ 10 мбар. Днем температура поверхности выше, а ночью ниже, чем температура атмосферы. У полюсов температура атмосферы опускается зимой ниже температуры фазового перехода углекислого газа(148 K при давлении 6 мбар), в результате чего CO2 превращается в сухой лед.

Рисунок 5.

Высотный профиль температуры атмосферы Марса, показанный на рисунке 5, отвечает средним условиям, т.е. относится к послеполуденному времени приэкваториальных широт. Температурный градиент днем близок к адиабатическому, от поверхности до 20-30 км, а выше, в стратосфере, достигаются условия, близкие к изотермии, с отдельными инверсионными слоями. В стратосфере Марса, так же как и на полюсах, может конденсироваться углекислота, однако марсианские облака преимущественно состоят из кристаллов водяного льда и расположены ниже, в тропосфере. Положение и температура мезопаузы на Марсе примерно такие же, как на Венере, а дневная экзосферная температура ~350 K, и она испытывает меньшие вариации в зависимости от времени суток.

8. Ионосфера.

Интенсивным высвечиванием энергии в инфракрасных полосах углекислого газа в верхних атмосферах Марса, по-видимому, объясняются их существенно более низкие по сравнению с Землей средние экзосферные температуры. Так называют температуру выше той области верхней атмосферы (термосферы), где происходит основной приток энергии за счет прямого поглощения атмосферными молекулами и атомами солнечного ультрафиолетового и рентгеновского излучения, и профиль температуры становится почти изотермическим. Экзосферная температура Марса не превышает 200-350 К, а основания экзосфер лежат примерно на 200 км ниже.

Измерения по методу радиопросвечивания с космических аппаратов показали, что Марс обладает ионосферой, однако менее плотной, чем земная, и ближе поджатыми к планете.

Основной максимум дневного слоя марсианской ионосферы лежит на высоте 135-140 км и имеет электронную концентрацию не более 2*105 эл/см3, т.е. почти на порядок меньше концентрации в дневном слое F2 ионосферы Земли. Второй максимум обнаружен на высоте около 110 км с электронной концентрацией 7*104 эл/см3. Основной компонентой марсианской ионосферы является ион O2+ с примесями O+ и др.; выше 200 км преобладают ионы O+. Ее дневной максимум с концентрацией (3-5)*105 эл/см3 расположен на высоте 140 км, резкий спад электронной концентрации наблюдается на уровне 250-400 км: здесь находится ионопауза - граница между тепловыми ионами ионосферы и потоками энергичных частиц солнечной плазмы. С ночной стороны образуется протяженная зона до высоты свыше 3000 км, со средней концентрацией электронов до 103 эл/см3 и несколькими локальными максимумами на высотах ниже 150 км, где концентрация в 5-10 раз выше, а основной ион O2+. Состав и содержание ионов в ионосфере Марса подвержены существенным вариациям.

Образование переходной зоны - ионопаузы с дневной стороны планеты в области, расположенной за ударной волной на высотах выше примерно 300-500 км, является наиболее характерной особенностью взаимодействия солнечной плазмы с Марсом. Радиационных поясов у него нет. Ионопауза образуется в зоне, где давление солнечного ветра примерно уравновешивается давлением ионосферных заряженных частиц вместе с давлением собственного магнитного поля планеты. В идеальной модели ионосферы бесконечной проводимости токи, индуцированные потоком солнечного ветра, текут по поверхности ионопаузы и непосредственно примыкающей к ней сверху области. Поэтому результирующее индуцированное магнитное поле расположено вне ионосферы. Примерно аналогичная ситуация сохраняется и в более реальном случае ионосферы конечной проводимости, поскольку время магнитной диффузии значительно больше времени изменения направления межпланетного магнитного поля, и диффузия последнего в невозмущенную ионосферу пренебрежимо мала.

На самом деле картина взаимодействия является значительно более сложной и имеет ряд специфических черт отдельно для Марса, как это было выявлено по результатам плазменных экспериментов на искусственных спутниках планеты. Комплексный характер процессов в области обтекания, помимо образования промежуточной зоны, отождествляемой с ионопаузой, включает также в себя последовательность разогрева и термализации ионов, образование зоны разрежения за ударной волной и много других особенностей.

9. Особенности теплового режима и атмосферной динамики.

Отдельный комплекс проблем представляет тепловой режим планетной атмосферы и ее динамика. Тепловой режим определяется количеством падающей на планету солнечной лучистой энергии (энергетической освещенностью) за вычетом энергии, отражаемой обратно в космическое пространство. Он зависит, таким образом, от расстояния a планеты от Солнца и ее интегрального сферического альбедо A, поскольку внутренними источниками тепла для всех планет земной группы можно пренебречь. Величина потока солнечной радиации, падающая по нормали на единичную площадку поверхности планеты в отсутствие атмосферы, определяет солнечную постоянную Ec. Через эти три величины и постоянную закона Стефана-Больцмана s выражается важный параметр, служащий мерой поступающей на планету энергии - ее равновесная (эффективная) температура

Te= [Ec(1-A)/4sa2]1/4.

Здесь a выражается в а.е., а четверка в знаменателе учитывает то обстоятельство, что поток энергии падает на диск, а излучается со сферы.

Планетарная динамика отражает баланс между скоростями генерации потенциальной энергии за счет солнечной радиации и скоростью потери механической энергии за счет диссипации.

Источником атмосферных движений различных пространственных масштабов служит отсутствие равенства между поступающей и отдаваемой энергией в отдельных участках планеты при общем строгом выполнении условия теплового баланса в глобальном масштабе, характеризуемого эффективной температурой. Другими словами, возникновение горизонтальных температурных градиентов вследствие дифференциального нагрева должно компенсироваться развитием крупномасштабных движений, с широким спектром пространственных размеров.


Страница: