Марс

В первом случае следует допустить, что на планете однажды произошло резкое изменение климата, вероятно, где-то в пределах 1 млрд. лет назад, и что до этого момента Марс, проходивший вершину своей геологической эволюции, был больше всего похож на Землю. Такое изменение могло быть обусловлено резким уменьшением выделения внутреннего тепла, с чем естественно связать и заключительный этап вулканической активности на Марсе. Но нельзя исключить, что колебания марсианского климата происходили неоднократно, подобно периодам великих оледенений на Земле. Высказываются даже предположения, что они происходят и сейчас с периодом от нескольких сот тысяч до миллиона лет. Эти предположения основываются на расчетах периодических колебаний наклонения экватора Марса к плоскости его орбиты вследствие приливных возмущений планет и Солнца и соответственно изменения инсоляции на полюсах. Расчеты К.Сагана, П.Гираша и О.Туна привели к выводу о том, что за счет изменения наклонения, эквивалентного колебаниям светимости Солнца, могут быть два предельных устойчивых состояния атмосферы Марса: одно с такой разреженной атмосферой, как сейчас, а другое - с атмосферой, по плотности равной земной. Источником возрастания плотности более чем в 100 раз в данной модели служили полюса, в полярных шапках которых предполагалось вымораживание больших количеств углекислоты. Было показано, что повышенное облучение полюсов за счет большего наклона оси вращения по сравнению с нынешним (примерно на 4-5о), сопровождаемое уменьшением их альбедо, в принципе способно создать такую атмосферу и одновременно растопить водяной лед.

Более поздними измерениями, выполненными "Викингами", не было, однако, обнаружено значительного количества "сухого" льда в шапках в чистом виде. По-видимому, основная масса дегазированной углекислоты находится в марсианском реголите, а также в отложениях тонкодисперсного пылевого материала вокруг полюсов и в напластованиях равнинных областей приполярных широт. Особенно большие наслоения такого грунта следует ожидать в северной полярной области за счет различия инсоляции марсианских полушарий: в северном зима длиннее. Тем не менее и в этом случае равновесное состояние между количеством адсорбированного углекислого газа и его парциальным давлением в атмосфере определяется температурой. Поэтому представления о возможности изменения плотности атмосферы в зависимости от изменения наклона оси вращения в целом остаются, по-видимому, справедливыми.

Конечно, было бы заманчиво поверить, что нам просто не довелось увидеть Марс другим, с более благоприятным климатом, из-за недостаточно большого наклона оси его вращения в современную эпоху и что это посчастливится увидеть нашим далеким потомкам примерно сто тысяч лет спустя. Однако против такой привлекательной гипотезы говорит тот факт, что прорытые водой и ледниками русла и ложбины, по-видимому, образовались раньше, чем относительно более молодые кратеры ударного происхождения на их высохшей поверхности, возраст которых оценивается по меньшей мере в десятки миллионов лет. Поэтому большего внимания заслуживает, на наш взгляд, предположение о циклических изменениях уровня светимости Солнца, выдвинутое американским астрофизиком В.Фаулером в связи с попытками объяснения парадокса солнечных нейтрино. Так называют значительно меньший (примерно в 5 раз) регистрируемый на Земле поток нейтрино от Солнца по сравнению с ожидаемым их выходом в результате реакций термоядерного синтеза, считающихся главным механизмом генерации солнечной энергии. Найденная корреляция этих циклов, повторяющаяся с периодичностью ~108 лет, с великими оледенениями на Земле естественным образом могла бы объяснить как периодические колебания марсианского климата, так и, возможно, значительные климатические вариации на других планетах.

Для выяснения путей эволюции атмосферы и древнего климата Марса очень важное значение имеют результаты масс-спектрометрических измерений в атмосфере планеты содержания малых примесей, в первую очередь инертных газов (см. табл. 2) и отношений основных изотопов. Путем сопоставления измеренных концентраций инертных газов с их абсолютным и относительным содержанием в земной атмосфере и газовой фракции метеоритов можно судить о степени их первичного фракционирования на стадии аккумуляции и происшедшей за геологическое время степени дегазации на планете. Анализ изотопного состава позволяет дополнительно выяснить степень дегазации и фракционирования летучих при диссипации газов из планетной атмосферы.

Результаты изотопного анализа и соотношений летучих (CO2/36Ar; N2/36Ar) на Марсе дают основание считать, что когда-то он действительно обладал более плотной атмосферой за счет приблизительно в 20 раз большего по отношению к существующему содержания углекислого газа и примерно от 10 до 100 раз большего содержания азота. Последняя оценка сделана на основании измеренного изотопного отношения азота (15N/14N), которое оказалось примерно на 75% выше, чем в атмосфере Земли, в то время как изотопные соотношения других распространенных составляющих – кислорода и углерода – сохраняются примерно аналогичными земным. Это приводит к важному выводу о том, что, хотя даже в самые благоприятные периоды атмосфера Марса оставалась по крайней мере вдесятеро менее плотной чем земная, такая атмосфера была способна создать заметный парниковый эффект и сохранить на поверхности жидкую воду.

Общее отогнанное количество воды на Марсе оценивается значением ~5*1021 г, что соответствует средней глубине равномерно разлитого на поверхности слоя около 20 м; это примерно на два порядка меньше, чем на Земле, но вместе с тем на порядок больше, чем на Венере. Можно ожидать, что почти вся эта масса отогнанной воды захоронена сейчас на Марсе в приповерхностных ледниках и полярных шапках, если исходить из предположения, что скорость диссипации атомов водорода на протяжении всей геологической истории планеты соответствовала современной величине потока (около 108 см-2*с-1). В этом случае количество потерянной воды, отнесенное к толщине эффективного слоя, не должно превысить 3-5 м.

Помимо адсорбирования на марсианском реголите и в напластованиях приполярных областей, одним из каналов эвакуации CO2 из атмосферы могли бы быть уже упоминавшиеся соединения включения – клатраты. Легко убедиться в том, что для оцененного выше количества H2O и CO2 молярное отношение для клатрата CO2nH2O соответствует n≈4-5, что почти совпадает с нижним пределом для газовых гидратов при нормальном давлении.

Может возникнуть вполне естественный вопрос: только ли удаленность от Солнца повлияла на климат Марса и что случилось бы с ним, окажись он по своим размерам таким же, как Земля и Венера? Можно предполагать, что в этом случае Марс аккумулировал и удержал бы существенно большее количество летучих, а вследствие иного хода тепловой эволюции степень дифференциации слагающего вещества и дегазации была более полной. Такой Марс, очевидно, обладал бы значительно более плотной атмосферой и умеренным климатом.


Страница: