Программно-аппаратное обеспечение
Рефераты >> Программирование и компьютеры >> Программно-аппаратное обеспечение

Однако, у чрезмерно длинного конвейера есть и свои недостатки. Первый недостаток очевиден – каждая команда теперь, проходя большее число стадий, выполняется дольше. Поэтому, чтобы младшие модели Pentium 4 превосходили по производительности старшие модели Pentium III, частоты Pentium 4 начинаются с 1.4 ГГц. Если бы Intel выпустил бы Pentium 4 1 ГГц, то этот процессор несомненно бы проиграл в производительности гигагерцовому Pentium III.

Второй недостаток длинного конвейера вскрывается при ошибках в предсказании переходов. Как и любой современный процессор, Pentium 4 может выполнять инструкции не только последовательно, но и параллельно, соответственно не всегда в том порядке, как они следуют в программе и не всегда доподлинно зная направления условных переходов. Для того, чтобы выбирать в таких случаях ветви программы для дальнейшего выполнения, процессор прогнозирует результаты выполнения условных переходов на основании накопленной статистики. Однако, иногда блок предсказания переходов все же ошибается, и в этом случае приходится полностью очищать конвейер, сводя на нет всю предварительно проделанную процессором работу по выполнению не той ветви в программе. Естественно, при более длинном конвейере, его очистка обходится дороже в том смысле, что на новое заполнение конвейера уходит больше процессорных

Advanced Dynamic Execution

Целью ряда ухищрений в архитектуре Pentium 4, под общим названием Advanced Dynamic Execution, как раз и является минимизация простоя процессора при неправильном предсказании переходов и увеличение вероятности правильных предсказаний. Для этого Intel улучшил блок выборки инструкций для внеочередного выполнения и повысил правильность предсказания переходов. Правда, для этого алгоритмы предсказания переходов были доработаны минимально, основным же средством для достижения цели было выбрано увеличение размеров буферов, с которыми работают соответствующие блоки процессора.

Так, для выборки следующей инструкции для исполнения используется теперь окно величиной в 126 команд против 42 команд у процессора Pentium III. Буфер же, в котором сохраняются адреса выполненных переходов и на основании которого процессор предсказывает будущие переходы, теперь увеличен до 4 Кбайт, в то время как у Pentium III его размер составлял всего 512 байт.

Результатом этого, а также благодаря небольшой доработке алгоритма, вероятность правильного предсказания переходов была улучшена по сравнению с Pentium III на 33%. Это – очень хороший показатель, поскольку теперь Pentium 4 предсказывает переходы правильно в 90-95% случаев.

Арифметико-логическое устройство (Rapid Execute Engine)

Наиболее простая часть современного процессора – это ALU (арифметико-логическое устройство). Благодаря этому факту, Intel счел возможным увеличить его тактовую частоту внутри Pentium 4 вдвое по отношению к самому процессору. Таким образом, например, в 1.4 ГГц Pentium 4 ALU работает на частоте 2.8 ГГц.

В ALU исполняются простые целочисленные инструкции, поэтому, производительность нового процессора при операциях с целыми числами должна быть очень высокой. Однако, на производительности Pentium 4 при операциях с вещественными числами, MMX или SSE двукратное ускорение ALU никак не сказывается.

Таким образом, латентность ALU существенно снижается. В частности, на выполнение одной инструкции типа add Pentium 4 1.4 ГГц тратит всего 0.35нс, в то время как выполнение этой команды у Pentium III 1 ГГц занимает 1 нс.

Поскольку Pentium 4 имеет совершенно новую архитектуру, то ему потребовался и новый чипсет. Так как Intel нацеливает свой новый процессор на приложения, работающий с потоками данных, то основной задачей такого чипсета должно являться обеспечение высоких пропускных способностей основных шин: шины памяти и системной шины, соединяющей процессор с северным мостом чипсета.

Pentium 4 использует совершенно новую Quad Pumped процессорную шину, работающую с частотой 400 МГц. Пропускная способность такой шины в три раза больше, чем пропускная способность шины процессора Pentium III, и составляет 3.2 Гбайт/с. Благодаря такой высокой пропускной способности, минимизируются простои быстрого процессора Pentium 4 в ожидании следующей порции данных. Физически, реализуется новая системная шина путем умножения в контроллерах процессорной шины чипсета и процессора тактовой частоты, которая для Pentium 4 составляет 100 МГц, на 4.

То есть, на частоте 400 МГц работает только участок между процессором и чипсетом.Наряду с такой высокопроизводительной шиной, чтобы система была сбалансирована, подсистема памяти для Pentium 4 должна обеспечивать не меньшую, чем 3.2 Гбайт/с, пропускную способность. Поэтому, при создании набора системной логики для нового процессора Intel принял решение адаптировать чипсет i840, который поддерживает два канала Direct RDRAM. Как известно, пропускная способность PC800 RDRAM составляет 1.6 Гбайт/с, то есть, при использовании двух каналов Rambus, пропускная способность памяти оказывается как раз на уровне 3.2 Гбайт/с.

IA-64

Merced

Merced – кодовое наименование ядра и первого процессора архитектуры IA-64, аппаратно совместим с архитектурой IA-32. Включает трехуровневую кэш-память объемом 2-4 Мбайт. Производительность примерно в три раза выше, чем у Tanner. Технология изготовления – 0,18 мкм, частота ядра – 667 МГц и выше, частота шины – 266 МГц. Превосходит Pentium Pro по операциям FPU в 20 раз. Физический интерфейс – Slot M. Поддерживает MMX и SSE2. Официальное наименование – Itanium.

Itanium – торговая марка, под которой анонсирован 64-разрядный процессор, ранее известный под кодовым наименованием Merced.

McKinley

McKinley – кодовое наименование ядра и моделей второго поколения процессоров архитектуры IA-64. Тактовая частота ядра процессоров начинается с 1 ГГц. Предполагается, что производительность, по сравнению с Merced, возрастет вдвое, а пропускная способность шины данных, имеющей результирующую частоту 400 МГц, – втрое. McKinley будет иметь увеличенные по сравнению с Merced объем кэша второго уровня и скорость работы. Потребляемая мощность составит 150 Вт. Физический интерфейс – Slot M.

Madison

Madison – преемник McKinley. Планируется к выходу в 2002-2003 г. Построен по медной, 0,13 мкм технологии.

Процессоры AMD

Athlon

 

AMD Athlon™

Тактовая частота, МГц

500 и выше

Напряжение питания ядра, В

1,6

Количество транзисторов на кристалле, млн

22

Технологическая норма 0.25 мкм, модели с частотами, МГц

500-700

Технологическая норма 0.18 мкм, модели с частотами, МГц

700 и выше

Частота внешней шины, МГц

200

SIMD-расширения

MMX, Enhanced 3DNow!

Объем кэш-памяти первого уровня, Кбайт

128

Объем кэш-памяти второго уровня, Кбайт

512

Частоты работы кэш-памяти L2, % от частоты ядра

33, 50, 66, 100

Число выполняемых операций за такт

до 9

Конвейеры для целочисленных вычислений

3

Конвейеры для вещественных вычислений

3

Декодеры команд x86

3

Количество ячеек в таблице предсказания ветвлений

2048


Страница: