Синтез комбинацонных схем и конечных автоматов, сети ПетриРефераты >> Программирование и компьютеры >> Синтез комбинацонных схем и конечных автоматов, сети Петри
На основе введённых понятий можно сформулировать ряд свойств сети Петри, характеризующих её в процессе смены маркировок – назовём их поведенческими свойствами сети Петри. Определим наиболее важные из них.
1 Достижимость данной маркировки. Пусть имеется некоторая маркировка μ, отличная от начальной. Тогда возникает вопрос достижимости: можно ли путём запуска определённой поледовательности переходов перейти из начальной в заданную маркировку.
2 Ограниченность. Сеть Петри называется k- ограниченной, если при любой маркировке количество фишек в любой из позиций не превышает k. В частности, сеть называется безопасной, если k равно 1. Кроме того, сеть называется однородной, если в ней отсутствуют петли и одинарной (простой), если в ней нет кратных дуг.
3 Активность. Сеть Петри называется активной, если независимо от дотигнутой из μ0 маркировки существует последовательность запусков, приводящая к запуску этого перехода.
Реально вводят понятия нескольких уровней активности для конкретных переходов. Переход tj
T называется:
а) пассивным (L0- активным), если он никогда не может быть запущен;
б) L1- активным, если он может быть запущен последовательностью переходов из μ0 хотя бы один раз;
в) L2- активным, если для любого числа K существует последовательность запусков переходов из μ0 , при которой данный переход может сработать K и более раз;
г) L3- активным, если он является L2- активным при K → ∞.
4 Обратимость. Сеть Петри обратима, если для любой маркировки μ
R(C, μ0) маркировка μ0 достижима из μ.
5 Покрываемость. Маркировка μ покрываема, если существует другая маркировка μ’
R(C, μ0) такая, что в каждой позиции μ’ фишек не меньше, чем в позициях маркировки μ.
6 Устойчивость. Сеть Петри называется устойчивой, если для любых двух разрешённых переходов срабатывание одного из них не приводит к запрещению срабатывания другого.
Существуют два основных метода анализа сетей Петри: матричные и основанные на построении дерева покрываемости.
Первая группа методов основана на матричном представлении маркировок и последовательностей запуска переходов. Для этого определим две матрицы размерности количество позиций
количество переходов, связанные со структурой сети. Первая матрица называется матрицей входов:
D – [i, j] = # (pi , I(tj)), (3.2.16)
каждый её элемент равен числу фишек, уходящих из j- й позиции при запуске i- го перехода. Вторая матрица называется матрицей выходов:
D + [i, j] = # (pi , O(tj)), (3.2.17)
каждый её элемент равен числу фишек, приходящих в j- ю позицию при запуске i- го перехода. Определим единичный вектор e[j] размерности m, содержащий нули во всех позициях кроме той, которая соответствует запускаемому в данный момент переходу. Очевидно, что переход разрешён, если μ ≥ e[j]·D –. Тогда результат запуска j- го перехода можно описать так:
μ’ = μ + e[j]·D, (3.2.18)
где D = (D + – D –) – матрица изменений. Тогда все сформулированные ранее проблемы сети Петри легко интерпретируются матричными уравнениями вида
μ = μ0 + σ·D, (3.2.19)
где μ – исследуемая маркировка, σ – вектор, компоненты которого показывают, сколько раз срабатывает каждый переход.
Хотя данный метод достаточно прост, он не лишён некоторых недостатков. А именно, его применение даёт лишь необходимые условия существования какого- либо свойства, иными словами, может гарантировать лишь его отсутствие, а о присутствии мы сможем говорить с уверенностью, только проанализировав дерево покрываемости (смены) маркировок.
Дерево маркировок сети – это связанный граф, в вершинах которого находятся маркировки, которых мы достигли в результате последовательного запуска разрешённых переходов, а на дугах, соединяющих вершины – зпускаемые переходы. Путь от корня к каждой маркировке отражает последовательность запусков, приведшую к ней. Корнем дерева является начальная маркировка. При неограниченном накапливании фишек в позиции на дереве образуется петля, а в маркировке на месте, соответствующем зациклившейся позиции, ставится ω – символ бесконечно большого числа.
Ясно, что этот метод хотя и требует утомительного перебора всех возможных маркировок сети, но зато по уже готовому дереву достаточно легко анализировать проблемы достижимости, покрываемости, активности, обратимости сети.
Описав поведенческие свойства и методы анализа, можно перейти непосредственно к анализу конкретной сети Петри.
3.3 Расчёты и полученные результаты
Исходная сеть в виде графа:
p1 p6
▪ ▪
t1 ▪ p4 t4
p2 p7
t2 ▪ p5 t5
p3 p8
t3 t6
Рисунок 3.3.1 – Исходная сеть Петри
Для матричного анализа сети найдём её матрицу изменений.
(3.3.1)
(3.3.2)
Матрицу изменений найдём как разность между (3.3.2) и (3.3.1):
(3.3.3)
Таким образом, получив матрицу изменений, можно записать матричное уравнение смены маркировок вида (3.2.19). Вектор начальной маркировки определим так:
μ0 = (10011100) (3.3.4)
Составим дерево покрываемости маркировок сети.
(10011100) ‘Новая’
![]() |
t1 t4
‘Новая’ ‘Новая’
(01001100) (10010010)
t2 t4 t1 t5
(00100100) (01000010) (01000010) (10000001)
‘Новая’ ‘Тупик’ ‘Тупик’ ‘Новая’
t3 t6
(10011100) ‘Старая’ (10011100) ‘Старая’
Рисунок 3.3.1 – Дерево покрываемости маркировок
Дерево покрываемости удобно оформить в виде графа. При этом более наглядно видны зацикливающиеся переходы, тупиковые маркировки никакими дополнительными пояснениями снабжать не требуется – отсутствие дуг, исходящих из данной маркировки, говорит само за себя. При достижении старой маркировки её не нужно заново наносить на граф – достаточно соединить дугой предыдущую маркировку и уже существующую “старую”.
Граф покрываемости сети выглядит следующим образом:
μ0
t3 t6
10011100
00100100 t1 t4 10000001
t2 t5
01001100 10010010
t4 t1
01000010
Рисунок 3.3.2 – Граф покрываемости маркировок сети Петри
Проанализируем сеть двумя методами – матричным и графическим и сравним полученные результаты.

