Некоторые характеристики и свойства микрообъектов
Соотношения неопределенностей и квантовые переходы. Указанное ранее основное противоречие квантовых переходов фактически снимается, если воспользоваться идеей дуализма, а, точнее, соотношениями неопределенностей. Предположим, что рассматривается переход электрона в атоме с уровня Е1 на уровень Е2 при поглощении фотона с энергией hω = Е2-Е1. Напомним, что противоречие перехода было связано с выяснением вопроса о том, что именно происходит сначала: поглощение фотона или переход электрона. легко видеть, что теперь этот вопрос попросту теряет смысл. Действительно, если до и после взаимодействия с излучением мы имеем связанный электрон с энергией соответственно Е1 и Е2, то во время взаимодействия с излучением получаем единую квантомеханическую систему, включающее в себя и электрон, и излучение. Эта система существует конечное время (пока происходит взаимодействие с излучением) и, согласно соотношению ΔEΔt > h, νε может иметь какой-либо определенной энергии. Поэтому нет смысла выяснять, что именно в подробностях происходит в такой системе. Во время взаимодействия электронов с фотонами нет, строго говоря, ни электронов, ни фотонов, а есть нечто единое целое, которое и следует рассматривать как единое целое – без уточнения деталей. Этот пример показывает, что в квантовой механике нельзя бесконечно детализировать во времени физический процесс. Вопрос: что происходит после чего? – не всегда можно ставить в отношении микроявлений.
Соотношение неопределенностей “число фотонов – фаза” . Используемые в квантовой теории соотношение неопределенностей отнюдь не исчерпываются вышеприведенными соотношениями. В качестве еще одного такого соотношения укажем соотношения неопределенностей для числа фотонов и фазы волны.
Пусть имеется монохроматическое излучение частотой ω. С одной стороны, оно может рассматриваться как коллектив фотонов, каждый из которых имеет энергию hω; с другой стороны – как классическая электромагнитная волна. Пусть N – число фотонов в рассматриваемом объеме, Ф = ωt – фаза классической волны. Корпускулярная характеристика излучения (число фотонов N) и волновая характеристика (фаза Ф) не могут иметь одновременно определенные значения; существует соотношения неопределенностей ΔNΔΤ > 1.
Чтобы прийти к этому соотношению, будем исходить из соотношения неопределенности для энергии и времени. Напомним, что для измерения энергии квантового объема ΔΕ νΰдо затратить время Δt > h / ΔE. Ερли в качестве квантового объекта рассматривается коллектив фотонов, то в этом случае ΔE = hΔNω, γδе ΔN – неопределенность числа фотонов. В течение времени Δt, необходимого для измерения энергии объекта с точностью до hΔNω, τΰза Ф объекта изменится на величину ΔФ = ωΔt. Οξдставляя сюда соотношение Δt > h / hωΔN, νΰходим ΔФ > 1 / ΔN, что и требовалось показать.
В соотношении ΔNΔΤ > 1 ξтразилось противоречивое единство корпускулярных и волновых свойств излучения. Неопределенность ΔФ мала, когда ярко выражены волновые свойства излучения; в этом случае велика плотность фотонов (велико N) , а следовательно, и неопределенность ΔN. С другой стороны, неопределенность ΔN мала, когда в коллективе мало фотонов; в этом случае ярко выражены корпускулярные свойства излучения, поэтому велика неопределенность ΔФ.
4. Некоторые результаты, вытекающие из соотношений неопределенностей.
Оценка энергии основного состояния атома водорода. Позволяя довольно простым путем получать важные оценки, соотношения неопределенностей оказываются полезным рабочим инструментом квантовой теории.
В качестве первого примера рассмотрим атом водорода в основном состоянии. Воспользуемся известным классическим выражением для энергии заряженной частицы, движущейся в кулоновском поле Е = p2 / 2m - e2 / r, где m и е – соответственно масса и заряд электрона. чтобы использовать это классическое выражение в квантовой теории, будем рассматривать величины р и r, входящего в него, как неопределенности соответственно импульса и координаты электрона. Согласно соотношению ΔpxΔx > h, эти величины связаны друг с другом. Положим pr h, или проще pr = h. Используя это равенство, исключим r из формулы. Получим E(p) = p2 / 2m - e2p / h.
Легко убедится, что функция E(p) имеет минимум при некотором значении р=р1; обозначим его через Е1. Величину Е1 можно рассматривать как оценку энергии основного состояния атома водорода, а величину r1 = h / p1 – как оценку линейных размеров атома. (в теории Бора это есть радиус первой орбиты) . Приравнивая к нулю производную, находим р1 = me2 / h. Отсюда немедленно получаем искомые оценки: r1 = h2 / me2, E1 = -me4 / 2h2.
Эти оценки полностью совпадают с результатами строгой теории. Конечно, к такому полному совпадению надо относится в известной мере как к случайному успеху. Всерьез здесь следует рассматривать лишь порядок величин. Подчеркнем, что этот порядок, как мы видим, оценивается весьма просто: достаточно заменить в классическом выражении точными значениями динамических переменных величинами, характеризующими степень “размытия” этих переменных, т.е. их неопределенностями, а затем воспользоваться квантомеханическими соотношениями, связывающими указанные неопределенности.
Оценка энергии нулевых колебаний осциллятора. Будем действовать точно так же, как и в предыдущем примере. Энергия классического одномерного гармонического осциллятора описывается выражением E = px2 / 2m + mω2x2 / 2.
Рассматривая px и х как неопределенности импульса и координаты осциллирующего микрообъекта и пользуясь в качестве соотношения неопределенностей равенством pxх = h, получаем Е(px) = px2 / 2m + mω2h2 / 2px2 .
Приравнивая к нулю производную, находим величину р0 = mωh, οπи которой функция Е(px) принимает минимальное значение. Легко убедится, что это значение равно Е = Е(p0) = hω.
Этот результат весьма интересен. Он показывает, что в квантовой механике энергия осциллятора не может обратиться в нуль; ее минимальное значение оказывается порядка hω. Это есть так называемая энергия нулевых колебаний.
Учитывая существование нулевых колебаний, можно прийти, в частности, к следующему интересному заключению: энергия колебательного движения атомов кристалла не обращается в не обращается в нуль даже при температуре абсолютного нуля.
Нулевые колебания иллюстрируют принципиальное общее обстоятельство: нельзя реализовать микрообъект на “дне потенциальной ямы” , или, иначе говоря, “микрообъект не может упасть на дно потенциальной ямы” . Этот вывод не зависит от вида потенциальной ямы, так как является прямым следствием соотношений неопределенности импульса; в этом случае неопределенность координаты должна стать сколь угодно большой, что противоречит самому факту пребывания микрообъекта в потенциальной яме.