Интеграл и его применение
Рефераты >> Физика >> Интеграл и его применение

Предел этой суммы называют определенным интегралом.

b

Sтр=ò f(x)dx

a

Сумма стоящая под пределом, называется интегральной суммой.

Определенный интеграл это предел интегральной суммы на отрезке [a;b] при n®¥. Интегральная сумма получается как предел суммы произведений длины отрезка, полученного при разбиении области определения функции в какой либо точке этого интервала.

a — нижний предел интегрирования;

b — верхний.

Формула Ньютона–Лейбница.

Сравнивая формулы площади криволинейной трапеции делаем вывод:

если F – первообразная для b на [a;b], то

b

ò f(x)dx = F(b)­–F(a)

a

b b

ò f(x)dx = F(x) ô = F(b) – F(a)

a a

Свойства определенного интеграла.

1.

b b

ò f(x)dx = ò f(z)dz

a a

2.

a

ò f(x)dx = 0

a

a

ò f(x)dx = F(a) – F(a) = 0

a

3.

b a

ò f(x)dx = – ò f(x)dx

a b

b a

ò f(x)dx = F(a) – F(b) ò f(x)dx = F(b) – F(a) = – (F(a) – F(b))

a b

4. Если a, b и c любые точки промежутка I, на котором непрерывная функция f(x) имеет первообразную, то

b c b

ò f(x)dx = ò f(x)dx + ò f(x)dx

a a c

F(b) – F(a) = F(c) – F(a) + F(b) – F(c) = F(b) – F(a)

(это свойство аддитивности определенного интеграла)

5. Если l и m постоянные величины, то

b b b

ò (lf(x) +m j(x))dx = l ò f(x)dx + m òj(x))dx –

a a c

– это свойство линейности определенного интеграла.

6.

b b b b

ò (f(x)+g(x)+ .+h(x))dx = ò f(x)dx+ ò g(x)dx+ .+ ò h(x)dx

a a a a

b

ò (f(x)+g(x)+ .+h(x))dx = (F(b) + G(b) + .+ H(b)) –

a

– (F(a) + G(a) + .+ H(a)) +C =

= F(b)–F(a)+C1 +G(b)–G(a)+C2+ .+H(b)–H(a)+Cn=

b b b

= ò f(x)dx+ ò g(x)dx+ .+ ò h(x)dx

a a a

Набор стандартных картинок

 

Т.к. f(x)<0, то формулу Ньютона-Лейбница составить нельзя, теорема верна только для f(x)³0.

Надо:

1) рассмотреть симметрию функции относительно оси OX. ABCD®A’B’CD b

2) S(ABCD)=S(A’B’CD) = ò –f(x)dx

a  

b b

S= ò f(x)dx = ò g(x)dx

a a

c b

S = ò (f(x)­–g(x))dx+ò(g(x)–f(x))dx

a c

f(x)® f(x)+m

g(x)®g(x)+m

b

S= ò (f(x)+m–g(x)–m)dx =

a

b

= ò (f(x)– g(x))dx

a

Если на отрезке [a;b] f(x)³g(x), то площадь между этими графиками равна

b

ò ((f(x)–g(x))dx

a

Функции f(x) и g(x) произвольные и неотрицательные

b b b

S=ò f(x)dx – ò g(x)dx = ò (f(x)–g(x))dx

a a a

b b

S=ò f(x)dx + ò g(x)dx

a a  

Применение интеграла

I. В физике.

Работа силы (A=FScosa, cosa¹ 1)

Если на частицу действует сила F, кинетическая энергия не остается постоянной. В этом случае согласно

d(mu2/2) = Fds

приращение кинетической энергии частицы за время dt равно скалярному произведению Fds, где ds – перемещение частицы за время dt. Величина

dA=Fds

называется работой, совершаемой силой F.

Пусть точка движется по оси ОХ под действием силы, проекция которой на ось ОХ есть функция f(x) (f–непрерывная функция). Под действием силы точка переместилась из точки S1(a) в S2(b). Разобьем отрезок [a;b] на n отрезков, одинаковой длины Dx = (b – a)/n. Работа силы будет равна сумме работ силы на полученных отрезках. Т.к. f(x) –непрерывна, то при малом [a;x1] работа силы на этом отрезке равна f(a)(x1–a). Аналогично на втором отрезке f(x1)(x2–x1), на n-ом отрезке — f(xn–1)(b–xn–1). Следовательно работа на [a;b] равна:

А » An = f(a)Dx +f(x1)Dx+ .+f(xn–1)Dx=

= ((b–a)/n)(f(a)+f(x1)+ .+f(xn–1))

Приблизительное равенство переходит в точное при n®¥

b

А = lim [(b–a)/n] ( f(a)+ .+f(xn–1))= ò f(x)dx (по определению)

n®¥ a

Пример.

Пусть пружина жесткости С и длины l сжата на половину свой длины. Определить величину потенциальной энергии Ер равна работе A, совершаемой силой ­–F(s) упругость пружины при её сжатии, то

l/2

Eп = A= – ò (–F(s)) dx

0

Из курса механики известно, что F(s)= –Cs.

Отсюда находим

l/2 l/2

Еп= – ò (–Cs)ds = CS2/2 | = C/2 l2/4

0 0

Ответ: Cl2/8.

Координаты центра масс

Центр масс – точка через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела.

Пусть материальная однородная пластина о имеет форму криволинейной трапеции {x;y |a£x£b; 0£y£f(x)} и функция y=f(x) непрерывна на [a;b], а площадь этойкриволинейной трапеции равна S, тогда координаты центра масс пластины о находят по формулам:

b b

x0 = (1/S) ò x f(x) dx; y0 = (1/2S) ò f 2(x) dx;

a a

Примеры.

Центр масс.

Найти центр масс однородного полукруга радиуса R.

Изобразим полукруг в системе координат OXY.

Из соображений симметрии и однородности замечаем, что абсцисса точки M

xm=0

Функция, описывающая полукруг имеет вид:

y = Ö(R2–x2)

Пусть S = pR2/2 — площадь полукруга, тогда


Страница: