Электрон в потенциальной яме. Туннельный эффект
Рефераты >> Физика >> Электрон в потенциальной яме. Туннельный эффект

1. Теория туннельного эффекта

Туннельный эффект — квантовое явление проникновения микро­частицы из одной классически доступной области движения в другую, от­делённую от первой потенциальным барьером (рис.1.1).[2]. Если рассматривается микрообъект, например, электрон в потенциальной яме, то в отличие от классической механики существует конечная вероятность обнаружить этот объект в запрещенной области пространства, там, где его полная энергия меньше, чем потенциальная энергия в этой точке.[3] Вероятность обнаружения частицы в какой-либо точке пространства пропорциональна квадрату модуля волновой функции Y. При подлёте к потенциальному барьеру частица пройдёт сквозь него лишь с какой-то долей вероятности, а с какой-то долей вероятности отразится. Коэффициент туннелирования (прохождения, просачивания) частицы через барьер D равен:

D=e(-2a/ ћ)(2m(U0-E))½ (1)

где а – ширина барьера, U0 – высота барьера.

Главная особенность (1) заключается в том, что очень малая величина ћ (постоянная Планка) стоит в знаменателе экспоненты, вследствие чего коэффициент туннелирование через барьер классической частицы большой массы очень мал.[4] Чем меньше масса частицы, тем больше и веро­ятность туннельного эффекта. Так, при высоте барьера в 2 эВ и ширине 10‑8 см вероятность прохождения сквозь барьер для электрона с энер­гией 1 эВ равна 0,78, а для протона с той же энергией лишь 3,6×10-19 . Если же взять макроскопическое тело — шарик массой в 1 г, движущийся по горизонтальной поверхности с очень малой скоростью (кинетическая энергия близка к нулю), то вероятность пре­одоления им препятствия — лезвия бритвы толщиной 0,1 мм, выступаю­щего над горизонтальной поверхно­стью на 0,1 мм, равна 10-26.

Прохождение частицы сквозь потенциальный барьер можно пояснить и с помощью соотношения неопределённо­стей. Неопределённость импульса D р на отрезке D х, равном ширине барь­ера а, составляет: Dр > ћ/а. Связан­ная с этим разбросом в значениях импульса кинетическая энергия (Dр)2/2m0 может оказаться достаточ­ной для того, чтобы полная энергия частицы оказалась больше потенци­альной. [2].

3.Туннельный эффект в физике

3.1. Туннелирование электронов в твёрдых телах

В 1922 г. было открыто явление холодной электронной эмиссии из металлов .под действием сильного внеш­него электрического поля. Оно сразу поставило физиков в тупик. График потенциальной энергии электрона в этом случае изображен на (рис.3.1.1.) Слева, при отрица­тельных значениях координаты х — область металла, в котором электроны могут двигаться почти свободно. Здесь потенциальную энергию можно считать постоян­ной. На границе металла возникает Потенциальная стен­ка, не позволяющая электрону покинуть металл; он мо­жет это сделать, лишь приобретя добавочную энергию, равную работе выхода Авых . При низкой температуре такую энергию может получить только ничтожная доля электронов.

Если сделать металл отрицательной пластиной кон­денсатора, приложив к нему достаточно мощное элек­трическое поле, то потенциальная энергия электрона из-за его отрицательного заряда вне металла начнет уменьшаться. Классическая частица, все равно не проникнет через такой потенциальный барьер, квантовая же вполне может протуннелировать.

Сразу после появления квантовой механики Фаулер и Нордгейм объяснили явление холодной эмиссии с помощью туннельного эффекта для электронов. Электроны внутри металла имеют самые разные энергии да­же при температуре абсолютного нуля, так как соглас­но принципу Паули в каждом квантовом состоянии мо­жет быть не больше одного электрона (с учетом спина). Поэтому число заполненных состояний равно числу электронов, а энергия самого верхнего заполненного состояния ЕF — энергия Ферми в обычных металлах со­ставляет величину порядка нескольких электронвольт, так же как и работа выхода.

Легче всего будут туннелировать электроны с энер­гией ЕF , с уменьшением энергии вероятность туннелирования резко падает. Все экспериментальные особенности, а также полная величина эффекта прекрасно опи­сывались формулой Фаулера - Нордгейма. Холодная электронная эмиссия — первое явление, успешно объясненное туннелированием частиц. [4].

3.2 Квантовые транзисторы

Оптическаяаналогия позволяет наглядно представить работу квантового транзистора. На (рис. 3.2.1) изображен оптический двухлучевой интерферометр, а также схема электронного транзистора с квантовым кольцевым контуром. Пропускание интерферометра (оптического или электронного) определяется простой формулой и однозначно зависит от разности набега фаз по двум путям. Транзисторный эффект достигается за счет изменения фазы волны электрона в одном из плеч интерферометра с помощью затворного напряжения, прикладываемого к электроду Э3.Еще более простая схема квантового транзистора получается, если взять за основу идею интерферометра Фабри-Перо (рис. 3.2.2). Здесь оптический резонатор, образованный зеркалами М1 и М2, реализуется в транзисторе с помощью тонкой проводящей нити — квантовой проволоки длиной L, отделенной от электродов Э1 и Э2 полупрозрачными для электронной волны барьерами. Условие максимума пропускания имеет такой же вид, как условие резонанса волны де Бройля в квантовой яме длиной L. Транзисторный эффект достигается путем изменения длины волны электрона с помощью напряжения, приложенного к электроду Э3. Наряду с интерференционными транзисторами разрабатываются квантовые транзисторы других типов — баллистического, с эффектом Джозефсона, с кулоновской блокадой. [29] В транзисторах на квантовых эффектах волновая природа электронов и соответствующие явления становятся основополагающими в их работе. [30]

3.3. Туннельный диод.

Ниже описаны диоды, работа которых основана на явлении квантово-механического туннелирования. Работа, подтверждающая реальность создания туннельных приборов была посвящена ТД, называемому также диодом Есаки, и опубликована Л.Есаки в 1958 году. Есаки в процессе изучения внутренней полевой эмиссии в вырожденном германиевом p-n переходе обнаружил "аномальную" ВАХ: дифференциальное сопротивление на одном из участков характеристики было отрицательным. Этот эффект он объяснил с помощью концепции квантово-механического туннелирования. В явлении туннелирования главную роль играют основные носители. Время туннелирования носителей через потенциальный барьер не описывается на привычном языке времени пролёта (t=W/v, где W-ширина барьера, v-скорость носителей ); оно определяется с помощью вероятности квантово-механического перехода в единицу времени. Эта вероятность пропорциональна exp[-2k(0)W], где k(0) - среднее значение волнового вектора в процессе туннелирования, приходящееся на один носитель с нулевым поперечным импульсом и энергией, равной энергии Ферми. Отсюда следует, что время туннелирования пропорционально exp[2k(0)W]. Оно очень мало, и поэтому туннельные приборы можно использовать в диапазоне миллиметровых волн (тбл 3.3.1) Благодаря высокой надёжности и совершенству технологии изготовления ТД используются в специальных СВЧ-приборах с низким уровнем мощности, таких, как гетеродин и схемы синхронизации частоты. ТД представляет собой простой p-n переход обе стороны которого вырождены (т.е. сильно легированы примесями). На (рис 3.3.1) приведена энергетическая диаграмма ТД, находящегося в состоянии термического равновесия. В результате сильного легирования уровень Ферми проходит внутри разрешённых зон. Степени вырождения Vp и Vn обычно составляют несколько kT/q, а ширина обеднённого слоя ~100 A и меньше, т.е. намного меньше, чем в обычном p-n переходе. На (рис.3.3.2.а) приведена типичная статическая вольт-амперная характеристика туннельного диода, из которой видно, что ток в обратном направлении (потенциал p-области отрицателен по отношению к потенциалу n-области) монотонно увеличивается. Полный статический ток диода представляет собой сумму тока туннелирования из зоны в зону, избыточного и диффузионного тока(рис 3.3.2.б). Уровни Ферми проходят внутри разрешенных зон полупроводника, и постоянен по всему полупроводнику. Выше уровня Ферми все состояния по обеим сторонам перехода оказываются пустыми, а ниже все разрешенные состояния по обеим сторонам перехода заполнены электронами. В отсутствии приложенного напряжения туннельный ток не протекает. На (рис 3.3.3) показано, как туннелируют электроны из валентной зоны в зону проводимости при обратном напряжении на диоде. Для того чтобы происходило прямое туннелирование, положения дна зоны проводимости и потолка валентной зоны в пространстве импульсов должны совпадать. Это условие выполняется в полупрводниках с прямой запрещенной зоной (в таких , как GaAs и GaSb). Оно может выполняться также в полупроводниках с непрямой запрещенной зоной (например, в Ge) при достаточно больших приложенных напряжениях, таких, что максимум валентной зоны находится на одном уровне с непрямым минимумом зоны проводимости.[31] Исследовали ВАХ при различных температурах в барьерных диодах Шоттки из Al и поли-3-октилтиодина.


Страница: