Трибология лыжных гонок
Рефераты >> Физика >> Трибология лыжных гонок

Всё это, конечно, в идеале. В условиях же соревнований процедуры должны быть упрощенны. Но даже в этом случае, не следует брать в расчет расхождения менее чем в 1 %.

3.4.7. Другие методы

Некоторые лыжные команды, в особенности итальянские, тестируют лыжи, устанавливая подряд сразу несколько радаров скорости. Это позволяет им тестировать степень ускорения лыж.

Несколько лет назад велись работы по использованию маленького ролика или гребного колесика, закрепленного на пяточной части лыжи. Эта конструкция соединялась с небольшим компьютером, регистрирующим скорость и степень ускорения лыжи, которые в последствии можно было вывести в виде графика. Эта прекрасная идея не получила своего развития, однако представлялась и до сих пор представляется исключительно полезной.

Наши российские специалисты придумали так называемую "взбивалку для яиц" небольшую машинку с вращающимися полиэтиленовыми (Р-Тех) дисками. Вращающийся диск прикладывается к снегу и измеряется сопротивление. Это приспособление позволяет технику за короткое время, и с регистрацией всех данных, протестировать столько мазей, сколько у него есть в наличии дисков. Оно также позволяет технику за короткий срок протестировать мази в разных местах (в верхней точке, в нижней точке и т.д.).

Велись также некоторые работы над приспособлением, которое тащило лыжу вдоль лыжни и измеряло сопротивление.

Все эти методы являются попытками собрать объективные и удобные для записи данные простым и легко выполнимым способом. При этом весьма желательно исключение погрешностей, связанных с самим лыжником (неравномерная загрузка лыж, сопротивление воздуха и т.д.).

Мы разобрались, почему лыжи «катят», а иногда не нет, какие парафины использовать и что нужно иметь для подготовки лыж. Теперь перейдем непосредственно к опыту.

4. Экспериментальное изучение коэффициента трения.

4.1. Физические основы теста на длину выката.

Рассмотрим динамику и кинематику наиболее распространенного и самого простого метода тестирования лыж, когда вы скатываетесь со склона из общей начальной точки, и смотрите, какие лыжи уезжают дальше – тест на длину выката (см. Рис. 4.1).

Теста на длину выката.

Рис. 4.1

Лыжник стартует без начальной скорости VНР = 0 с вершины ровной горы высотой H, составляющей некоторый угол a с горизонталью, и за время tР проезжает по склону расстояние LР, постоянно разгоняясь до скорости VР.

Затем в течение времени tТ лыжник движется по горизонтальной поверхности и на некотором расстоянии от окончания склона LТ он остановится VКТ = 0.

При этом можно принять следующие допущения: коэффициент трения о снег m постоянен; сопротивления воздуха отсутствует; переход от наклонного участка к горизонтальному происходит без удара.

Требуется определить абсолютную величину коэффициент трения о снег m и относительную эффективность скольжения тех лыж, которые за счет лучшей смазки (меньшего коэффициента трения m¢) позволяют лыжнику увеличить длину выката на некоторую величину DL .

Прежде всего, решим поставленную задачу исходя из законов Ньютона и формул равноускоренного движения.

На первом (наклонном) участке равноускоренного движения лыжника (с ускорением ар) введем плоскую декартову систему координат с осями:

ХР – направленную по ходу движения лыжника (под углом a к горизонту) ;

– направленную перпендикулярно склону,

и запишем второй закон Ньютона относительно этих осей (сумма проекций всех сил действующих вдоль некоторой оси равна массе тела умноженной на проекцию ускорения вдоль данной оси):

(4.1)

(4.2)

Раскроем левые части выражений (4.1) и (4.2) при условии, что сопротивления воздуха осутствует

(4.3)

(4.4)

Получив из (4.4), что , и подставив значение силы реакции опоры на наклонном участке в (4.3) запишем

(4.5)

Учтем, что из геометрических соотношений (см. Рис. 4.1)

, а .

Приняв во внимание, что при малых углах a отношение , а , из (4.5) получим

. (4.6)

Стартуя без начальной скорости и двигаясь равноускоренно (с ускорением ар) лыжник к концу наклонного участка достигнет скорости равной

, (4.7)

затратив на это время

, (4.8)

и пройдя путь

. (4.9)

С учетом (4.6), последнее выражение можно переписать относительно V2P

(4.10)

На втором (горизонтальном) участке равнозамедленного движения лыжника (с ускорением аТ) введем плоскую декартову систему координат с осями:

ХТ – направленную по ходу движения лыжника (горизонтально) ;

– направленную перпендикулярно первой,

и аналогично (4.1) и (4.2) запишем второй закон Ньютона относительно этих осей

(4.11)

(4.12)

Раскроем левые части выражений (4.11) и (4.12) при условии, что нет сопротивления воздуха

(4.13)

(4.14)

Приняв из (4.14), что , и подставив значение силы реакции опоры на горизонтальном участке в (4.13) запишем

, (4.15)

получив аналогично (4.6)

. (4.16)

При условии, что переход от наклонного участка к горизонтальному происходит без удара, а скорость лыжника в момент начала торможения равна его скорости в конце окончания разгона


Страница: