Общая гидродинамика
Рефераты >> Физика >> Общая гидродинамика

Равенство (19) означает, что будут равны также инварианты тензоров, стоящих в левой и правой частях. Приравниваем линейные инварианты этих тензоров, которые находим с помощью формул (12), (18):

Отсюда находим

Выразим теперь через давление ,

тогда из (19) получаем следующий закон для вязкой жидкости (М.Навье, 1843 г.; Г.Стокс, 1845 г.):

(20)

Величина называется коэффициентом динамической вязкости, а - коэффициентом второй вязкости. Коэффициент динамической вязкости характеризует внутреннее трение слоев жидкости в их отдельном движении. Смысл этого коэффициента ясно виден на простейшем примере слоистого течения , , , в котором возникает сила трения

Это выражение для силы трения было предложено Ньютоном. На этом основании формулу (20) называют обобщенным законом вязкости Ньютона, а жидкости, удовлетворяющие этому закону, называются ньютоновскими.

Коэффициент характеризует объемную вязкость, действие которой может проявляться только в сжимаемой жидкости.

Коэффициенты , всегда положительны, они могут быть функциями температуры, либо постоянными для данной среды. Наряду с используется коэффициент кинематической вязкости . Значения заметно отличаются от нуля только в особых случаях. В рамках классической гидродинамики эффект второй вязкости обычно не учитывается. Введем обозначение , тогда из (20) получаем следующие уравнения модели вязкой жидкости, связывающие компоненты тензоров напряжений и скоростей деформации:

(21)

Запишем эти уравнения в обычных обозначениях декартовых ортогональных координат:

(22)

Уравнение Навье-Стокса. Если объединить уравнения движения сплошной среды

(23)

с обобщенным законом Ньютона, иначе говоря, если подставить вместо тензора напряжений выражение его через тензор скоростей деформации, то получим уравнение движения, пригодное только для частного класса сред - вязких ньютоновских жидкостей. Получаемое при этом векторное уравнение называется уравнением Навье-Стокса (в скалярной форме - уравнениями Навье-Стокса).

Запишем уравнения Навье-Стокса в декартовой ортогональной системе координат x, y, z. Выражения для компонент тензора напряжений дается формулами (22), выражающими обобщенный закон Ньютона в декартовой системе координат. Подставляя их в уравнение движения, получим

(24)

Если жидкость несжимаемая и = const, то система (24) упрощается, и ее удобно записать в векторной форме

(25)

Уравнения (24), (25) были выведены первоначально на основе представлений о молекулярной структуре среды и о межмолекулярных силах (М.Навье, 1827 г.; С.Д.Пуассон, 1831 г.) На основе феноменологических представлений о линейной связи между тензорами скоростей деформации и напряжений, обобщающих закон Ньютона, эти уравнения вывели Б.Сен-Венан в 1843 г. и Г.Г.Стокс в 1845 г.

Воспользуемся теперь формулами обобщенного закона Ньютона (22) для того, чтобы исключить из уравнения энергии:

(26)

Входящая в это равенство функция называется диссипативной функцией. Очевидно, при .

Уравнение энергии переписывается в следующей эквивалентной форме:

(27)

Задача о стекании слоя вязкой жидкости по наклонной плоскости. Слой жидкости (толщины h) ограничен сверху свободной поверхностью, а снизу неподвижной плоскостью, наклоненной под углом к горизонту. Определить движение жидкости, возникающие под влиянием поля тяжести.

Решение: Выберем неподвижную нижнюю плоскость в качестве плоскости xy, причем ось x выберем по направлению течения. Ось z перпендикулярна плоскости xy и дополняет систему координат до правой ортогональной. Ищется решение, зависящее только от координаты z. Уравнение Навье-Стокса с при наличии гравитационного поля g имеет вид:

На свободной поверхности ( z = h ) должны выполняться условия:

где - атмосферное давление, а - коэффициент динамической вязкости. При z = 0 должно быть ; удовлетворяющие этим условиям решение есть

Количество жидкости, протекающие через поперечное сечение слоя на единицу длинны вдоль y равно


Страница: