Использование геоинформационных систем при моделировании месторождений полезных ископаемых
Рефераты >> Геология >> Использование геоинформационных систем при моделировании месторождений полезных ископаемых

Для выполнения интерпретации геологических данных в скважинах используются стратиграфические и литологические индексы пород, а также данные опробования (химическое или физико-технологическое). Оконтуривание зон минерализации выполняется по значениям бортового содержания полезного компонента. В результате интерпретации создаются замкнутые контуры, которые описывают минеральные разновидности и породы (рис.3) [5].

Рис. 3 – Интерпретация рудных тел по данным разведочных скважин для одного разведочного профиля

Подобным образом выполняется оконтуривание рудных тел для всех геологических профилей. После интерпретации данных они загружаются в трехмерное пространство для проверки правильности построения и увязки (рис. 4.) [5].

Рис. 4 – Интерпретация рудных тел по разведочным профилям

Следующим этапом моделирования является создание каркасных моделей. Они строятся для рудных тел, для минеральных разновидностей в контурах рудных тел и разновидностей пород вскрыши (пустых пород). При создании каркасов используются различные алгоритмы связывания граней каркасных фигур [2], а также ограничения на распространение каркасов на участках с различной конфигурацией (рис.5.) [5]. Каркасы подвергаются детальной проверке, что обеспечивает правильность триангуляции и отсутствие ошибок в моделях.

Рис. 5 – Результат каркасного моделирования месторождения

Для месторождений рудных полезных ископаемых при уточнении контуров простирания рудных тел и оценки запасов используется блочное моделирования с интерполяцией содержания компонентов. Если классический статистический анализ дает четко ограниченные популяции и закон распределения выборки близкий к нормальному или со смещением, то для моделирования различных геологических величин в пространстве модели, ограниченному каркасами используется геостатистический анализ.

В системе присутствует инструментарий для выполнения такого анализа. Он включает построение и моделирование вариограмм. Последовательность действий при их создании и расчете классическая. Первоначально выполняется построение всенаправленной вариограммы. На ее основе выполняется построение розы направленных вариограмм, из которой, в свою очередь, определяется направление максимальной непрерывности. Строится роза вертикальных вариограмм в плоскости максимальной непрерывности и определяется угол ее падения. Далее определяются углы и азимуты падения основных осей пространственной анизотропии минерализации (рис. 6.) [5].

Рис. 6 – Построение вариограмм для определения пространственной анизотропии минерализации

По данным вариограмм для каждого направления по заданной модели (линейная, экспоненциальная, логарифмическая или сферическая) формируются соответствующие модели интерполяции значений содержания (учет эффекта самородком, пороговые значения и интервалы влияния для каждой структуры).

Завершающим этапом для создания моделей месторождений руд является блочное моделирование. Этот процесс заключается в создании пустых блочных моделей, ограниченных каркасами; интерполяция значений содержания компонентов на базе установленного закона распределения и уточнение контуров пород по заданным кондициями.

При моделировании распределения компонентов учитывается большое число факторов: характер изменчивости геологических характеристик, структура и морфология месторождения, густота и равномерность разведочной сети. В связи с этим используются различные методы пространственной интерполяции: полигональный, обратных расстояний в степени IDW, крайгинга (обычный, индикативный, полииндикативный) [4]. После формирования блочной структуры выполняют корректировку каркасных моделей путем исключения областей с некондиционными породами (рис. 7.) [5].

Рис. 7 – Блочная модель месторождения для различных видов полезного компонента

Сформированная трехмерная модель месторождения в дальнейшем может быть использована для подсчета запасов месторождения или его участков, геолого-экономической оценке, задачах календарного планирования и определения экономически целесообразных контуров отработки.

С помощью ГИС K-MINE в настоящее время выполнено моделирование месторождений железистых кварцитов, богатых железных руд, бурых железняков, коренных титановых руд, урановых руд, месторождений золота и марганца.

Моделирование месторождений нерудных полезных ископаемых

Месторождения нерудных полезных ископаемых характеризуются широким многообразием. ГИС K-MINE нашла свое применение при моделировании месторождений гранитов, огнеупорных и тугоплавких глин, кварцевых песков, мела, известняков, доломитов, каолинов, сырья для кирпичной промышленности, строительных русловых песков и др.

При формировании моделей месторождений нерудных полезных ископаемых используются подходы аналогичные и для месторождений руд. Однако специфика каждого вида сырья вносит свои коррективы. Так, для гранитов, очень важным является четкое определение зон выветривания и контактов пород, радиологические показатели и трещиноватость массива; для огнеупорных глин и каолинов – пространственная изменчивость мощности пласта и разделение глин на сорта по химическим показателям опробования для дальнейшей селективной добычи; для известняков и доломитов – точное определение зон выветривания и карстообразования и т.д.

Естественно, что многообразие нерудных полезных ископаемых накладывает отпечаток на функциональность программного обеспечения. В модуле моделирования месторождений предусмотрены процедуры геометризации залежей, пластов, тел, которые имеют характерный вид залегания для различных видов полезных ископаемых.

В составе модуля геологического моделирования для нерудных полезных ископаемых интегрирован блок интерпретации данных в разведочных профилях. Блок содержит набор функций для построения геологических разрезов. Среди них функции геометрического построения с моделированием пород по чередованию сверху вниз, снизу вверх, по мощности пород, автовыбор, моноклинально с возможностью восстановления скважин по глубине по средним значениям мощности слоя и т.д. (рис. 8) [5].

а)

б)

Рис. 8 – Построение геологических разрезов разными способами:

а) пластовые месторождения огнеупорных глин, режим моделирования «автовыбор»; б) месторождение известняков, режим моделирования «моноклинальный»


Страница: