Повышение продуктивности пласта воздействием кислотных композиций
Рефераты >> Геология >> Повышение продуктивности пласта воздействием кислотных композиций

3.1 Кислотные составы на водной основе

Наиболее широкое применение получили обычные соляно-кислотные растворы, как правило, содержащие HCl 10…18%-й концентрации, и глинокислотные с концентрацией HF 3…5%. Они находятся на этапе освоения скважин и при первичных обработках.

В целях увлечения проникающей способности таких составов в пласт при обработках низкопроницаемых коллекторов, улучшении их нефтеотмывающих свойств, а также замедлении скорости реакции с карбонатами вводят различные ПАВ типа ОП-10, Аф9-12, МЛ-72 и др. Так, с добавкой лишь 0,25% ОП-10 10%-й раствор HCl имеет скорость реакции с карбонатами около 7000 г/(м2«ч) при 25 0С.

При обработках железосодержащих коллекторов с целью удержания ионов Fe3+ в растворенном состоянии дополнительно вводят туда до 5% уксусной или до 1% лимонной кислоты. Применение других комплексообразователей ионов железа в отечественной практике затруднено из-за их дефицитности и высокой стоимости.

Одними из эффективных составов для кислотной обработки низкопроницаемых обводненных пластов являются ацетоно-, гликоле- или спиртокислотные растворы, которые широко используются в районах Западной Сибири, Средней Азии и Астрахани.

Введение спирта или ацетона позволяет снизить межфазное натяжение на границе с нефтью, улучшить проникающую способность состава в пласт, эффективно удалить влагу из пор пласта и замедлить скорость реакции с горной породой. К недостаткам таких кислотных растворов относятся их высокая пожаро- и взрывоопасность, токсичность, а так же высокая коррозионная активность с отсутствием комплексирующей способности в отношении ионов Fe3+.

Альтернативным решением в этом плане является разработка таких кислотных составов, которые содержали бы поверхностно-активный компонент с высокими ингибирующими и железокомплексирующими свойствами.

Одной из причин низкой эффективности повторных кислот и глинокислотных обработок ПЗП является проникновение низковязких кислотных растворов в одни и те же высокопроницаемые интервалы пласта с прорывом кислот вплоть до нагнетательных скважин. При этом в разработку не подключаются перфорированные толщины пласта, которые закольматированы в процессе вскрытия и эксплуатации скважин. Для устранения этого недостатка широко практикуют предварительное нагнетание в скважины вязких изолирующих материалов до начала роста давления закачки с целью перекрытия дренированных зон и перераспределения потоков кислоты в менее проницаемые нефтегазонасыщенные интервалы. Такие технологии отличаются, как правило, используемым блокирующим материалом.

Практическое осуществление такого процесса в нашей стране предложено в начале 70-х гг. путем попеременной закачки порций 3…5%-х растворов КМЦ (карбоксиметилцеллюлоза) или загущенных хлористым натрием до 500…700 мПа*с растворов лигносульфонатов технических.

3.2 Пенокислоты

Пенокислотные обработки (ПКО) скважин имеют несомненные преимущества перед обычными КО. В пенокислотном составе замедляется в 10…18 раз скорость реакции с карбонатами в связи с уменьшением поверхности контакта между активной кислотой и горной породой, а также ограничением диффузии свежих порций кислоты и ее обратного раствора. За счет повышенной вязкости пенокислоты значительно увеличивается охват пласта кислотным воздействием. Наличие в пене дисперсной газовой фазы с большой удельной поверхностью способствует эффективному выносу из ПЗП твердых кольматантов.

Исследованиями В.С.Уголева и др. (1978 г.) установлено, что наибольшей стабильностью обладают кислотные пены на основе 10% HCl, содержащие традиционно использующиеся для этой цели ПАВ.

Кроме того, согласно зарубежным данным при прокачке через карбонатные керны вспененной кислоты образуется густая сеть протяженных каналов растворения в отличие от нескольких неглубоких каналов для обычного кислотного раствора.

Опыт проведение пенокислотных обработок на месторождениях Пермской области в 70-х гг. позволил повысить успешность КО в два раза при одновременном расширении профиля притока примерно в 1,5 раза.

В дальнейшем технология ПКО получила некоторое видоизменение в целях придания ей более направленного воздействия на низкопроницаемые толщины. При этом перед пенокислотой в пласт закачивают временно закупоривающий состав (ВЗС) со степенью аэрации 1,5…3,0 в пластовых условиях. Массовое содержание компонентов в составе ВЗС следующее (%)6 химически осажденный мел – 30…40, алебастр – 2…6, ПАВ – 1…2, вода – остальное.

При обработке шести скважин имели место тенденции снижения обводненности и увеличения дебита скважин.

В ПО Юганскнефтегаз на полимиктовых коллекторах используют предварительную закачку пеноглинокислотного состава, состоящего из (%): HCl – 28, HF – 5, ОП-10 – 3, КМЦ-600 – 1,5 и вода – остальное, который продавливают в пласт глинокислотным раствором без КМЦ-600.

В США применяют циклическую закачку вспененной воды для блокирования трещин с наращиванием объема газа (N2) от 40 до 80 %, а затем 40-кратной вспененной азотом кислоты.

В последние годы положительные качества пенокислот используются при генерировании их в забойных и пластовых условиях. При этом используют реакции газовыделения, происходящие в контакте HCl и реагентов газовыделения (мочевина, нитрит аммония, нитрит натрия и хлористый аммоний). Такие обработки широко используются на месторождениях Западной Сибири и Северного Кавказа.

3.3 Прямые кислотосодержащие эмульсии

В условиях интенсивного отложения АСПО на стенках фильтрационных каналов, сопряженных с неоднородностью пластов, применение кислотных растворов без углеводородных растворителей неэффективно. Для трещиноватых же коллекторов в таких условиях требуется еще и равномерное поступление углеводородных растворителей с кислотой в ПЗП.

Одним из решений этой проблемы является применение прямых кислотосодержащих эмульсий (ПКЭ) с внутренней углеводородной фазой. При их закачке создаются условия для повышения охвата ПЗП воздействием по толщине и глубине, равномерного продвижения растворителя без их быстрой диффузии по радиусу проникновения, предотвращению преждевременного осаждения диспергированных кольматантов, а также снижается скорость коррозии подземного оборудования.

Кроме того, более низкие значения плотности эмульсии позволяют им с большей долей вероятности фильтроваться в верхние, менее водонасыщенные интервалы, снижая объем попадания эмульсии в зоны, граничащие с подошвенной водой.

Ассортимент известных композиций таких эмульсий невелик и по составу практически идентичен.

Так, известна ПКЭ, которая включает (%): керосин – 30…55, 10…13 %-й раствор HCl – 40…65, 30 %-й раствор сепарола в воде и 5,8 %-й раствор ПАА в воде – 0,01…0,1. эмульсия имеет эффективную вязкость 13…35 мПаŸс и за 6 ч растворяет 30…65 % мрамора, успешно испытана на месторождениях Азербайджана.

В промысловых экспериментах эмульсию закачивали из расчета 0,5…1,0 м3 на 1 м вскрытой толщины пласта и продавливали в ПЗП углеводородным растворителем. Однако в ряде случаев отмечалось увеличение обводненности продукции. Это, очевидно, свидетельство преимущественного поступления эмульсии в водонасыщенные интервалы ввиду ее гидрофильности и невысокой вязкости. Массовое содержание второго состава эмульсии следующее: 0,2…1,0 % ОП-10 или 0,7…1,5 % смеси ОП-10 и МЛ-80 и остальное – нефть и 12…24 %-й раствор HCl в соотношении 1:1.


Страница: