Оптимизация технологических режимов работы скважин механизированного фонда
Рефераты >> Геология >> Оптимизация технологических режимов работы скважин механизированного фонда

Помимо биокоррозии, микроорганизмы являются причиной закупоривания нефтяного пласта либо скоплением биомассы бактерий, либо продуктами их метаболизма, в частности, сульфидами, окислами железа, вторичными кальцитами. Причем закупоривание нефтеносных горизонтов происходит как в призабойной зоне, так и в глубине заводняемого пласта, что приводит к существенному снижению нефтеотдачи пластов, уменьшению коэффициента извлечения нефти, вплоть до полной изоляции залежи от водонапорной системы. Бактерии ухудшают качественный состав нефти, потребляя легкие углеводороды и образуя альдегиды, кислоты и другие продукты. Кроме того, жизнедеятельность микроорганизмов приводит к биодеструкции химреагентов, используемых для увеличения нефтеотдачи, в частности, ПАВ и полимеров.

Известно, что микрофлора нефтяных пластов и нефтепромысловых сред характеризуется значительным разнообразием. Однако с практической точки зрения интерес представляет идентификация тех групп бактериальной микрофлоры, жизнедеятельность которых приводит к существенному экономическому ущербу, как, например, к коррозии металла, к повышению вязкости нефтепромысловой среды и другим отрицательным явлениям. Эти последствия вызывает биоценоз сульфатвосстанавливающих (СВБ) и гетеротрофных (ГТБ) бактерий.

Повышенная численность ГТБ в нефтяных пластах свидетельствует о том, что в них сформировался биоценоз с преобладанием аэробных процессов окисления углеводородов нефти. Существенного развития СВБ в нефтяных пластах на данный момент не отмечено, и пласты характеризуются слабым уровнем биозараженности СВБ. Это может быть связано с тем, что высокая температура нефтяных пластов - 97 - 102 0С позволяет развиваться только термофильной бактериальной микрофлоре, численность которой относительно невысока.

Следует, однако, отметить, что присутствие сульфат-анионов в пластовых и речной водах, высокая численность ГТБ в нефтяных пластах, создают предпосылки для дальнейшего развития СВБ в наземных коммуникациях. Это впоследствии может привести к интенсивной биокоррозии наземного нефтепромыслового оборудования.

Для борьбы с бактериальным заражением разработаны физические и химические способы. Наиболее эффективным средством борьбы с микроорганизмами в нефтедобыче в настоящее время является применение химических методов, в частности, использование биоцидов. Их выбор определяется на основе доступности, технологичности, а также активности относительно конкретного типа микроорганизмов. Следует отметить, что микроорганизмы обладают способностью адаптации к применяемым реагентам, что требует постоянного обновления ассортимента биоцидов.

Наибольшую опасность в развитии бактериальной коррозии представляют не планктонные, а прикрепленные к металлической поверхности колонии бактерий, образующие на ней биопленку.

Для защиты нефтепромыслового оборудования от коррозии в условиях бактериального заражения и подавления биоценоза в нефтяном пласте предлагается технология комплексной защиты, заключающаяся в последовательной обработке коррозионно-агрессивных нефтепромысловых сред биоцидом и ингибитором коррозии. Предварительная биоцидная обработка подавляет биокоррозию, а также за счет отмыва биопленки и механических примесей с поверхности металла облегчает доступ к ней ингибитора коррозии.

В соответствии с данными обследования для проведения профилактических мероприятий по недопущению развития бактериального биоценоза нефтяных пластов и защите от бактериальной коррозии оборудования системы ППД рекомендуется проводить обработку биоцидом закачиваемых в систему ППД речных вод. Так как речная вода, используемая в системе ППД, по коррозионной агрессивности – слабоагрессивна, то нет необходимости в применении ингибиторов для защиты водоводов от коррозии. При использовании для заводнения пластов сеноманской либо подтоварной воды применение ингибиторов коррозии обязательно.

При реализации технологии закачка биоцида может осуществляться в различных вариантах в зависимости от необходимости охвата обработкой определенной части системы ППД и технической возможности:

- с КНС с дозированием реагентов на вход или выкид насосной станции;

- с помощью передвижного насосного оборудования с устья отдельных очаговых нагнетательных скважин;

- с дозированием реагентов на выкид ПНС, перекачивающей речную воду.

Технология применения биоцида включает в себя следующую последовательность технологических операций:

- доставку к месту врезки в водовод необходимого для закачки объема химреагентов;

- приготовление в автоцистернах АЦ-10 водного раствора либо водной эмульсии биоцидов;

- закачку агрегатом ЦА-320 через специальный эжектор с регулируемой подачей реагента водного раствора либо эмульсии биоцида в течение 24 часов.

4. ТЕХНИЧЕСКАЯ ЧАСТЬ

4.1 Конструкция скважин Приразломного месторождения

Конструкция добывающих скважин на Приразломном месторождении одноколонная (рисунок 4.1).

Направление диаметром 324 мм спускается на глубину 30м с целью перекрытия неустойчивых четвертичных отложений. Направление оборудуется башмаком Б-324. Цементирование направления производится портландцементом ПЦТ-ДО-50 плотностью 1,83 г/см3 до устья.

Кондуктор диаметром 245 мм спускается на глубину 700 м, применяются трубы НО РМКБ. Кондуктор оборудуется башмаком БК-245 и пружинными центраторами ЦЦ-245/295-320-I в количестве 3 штук, один из которых устанавливается на башмачной трубе, второй – на 10 м выше и один на верхней трубе. Цементирование кондуктора производится портландцементом ПЦТ-ДО-50 до устья.

Эксплуатационная колонна диаметром 146 мм спускается на проектную глубину 2590 м. Для добывающих скважин применяются трубы ГОСТ-632-80 с нормальной резьбой. Колонна труб оборудуется башмаком БК-146, обратным клапаном ЦКОД-146/191-216-1, центрирующими фонарями ЦЦ-146/191-216-1 в количестве 11 штук, которые устанавливаются в продуктивной части разреза на расстоянии не более 10 м друг от друга.

Тампонажный цемент за эксплуатационной колонной поднимается на 100 м выше башмака кондуктора.

Продуктивная часть разреза цементируется (в интервале 2370-2590 м) портландцементом ПЦТ-ДО-100, плотностью 1,8 г/см3. Перед тампонажным раствором в скважину закачивается 15 м3 буферной жидкости (техническая вода обрабатывается 0,6% сульфанола).

Рисунок 4.1 - Конструкция скважины Приразломного месторождения

При толщине глинистой перемычки менее 2 м, расположенной между нефтяным и водоносным пластами, на колонне устанавливаются центраторы через 5 м на участке 20 м от границы интервала перфорации.

Конструкция водонагнетательных скважин на Приразломном месторождении одноколонная. Направление диаметром 324 мм спускается на глубину 30 м и цементируется до устья портландцементом. Согласно протоколу № 6 технического совещания Главтюменнефтегаза от 20 марта 1987 г по вопросу “Повышения эксплуатационной надежности нагнетательных скважин” предусматривается: кондуктор диаметром 245 с резьбой ОТТМБ спускается на глубину 780 м, с целью перекрытия Люлинворской свиты. Цементирование кондуктора производится портландцементом ПЦТ-ДО-50 до устья. Кроме башмака и центрирующих фонарей предусматривается обратный клапан ЦКОД-245-2. Эксплуатационная колонна комплектуется из труб диаметром 139,7 мм или 146,1мм с резьбой типа “Батресс” с тефлоновым уплотнением, спускается на проектную глубину 2590 м.


Страница: