Изменение белков и других азотистых веществ при тепловой обработке мяса, рыбы и блюд из них
Рефераты >> Кулинария >> Изменение белков и других азотистых веществ при тепловой обработке мяса, рыбы и блюд из них

Изменение соотношения заряженных (кислых и основных) групп в результате денатурации и постденатурационных превраще­ний связано с изменением рН. В то же время установлен факт пря­мой корреляционной зависимости между значением рН сырья, водоудерживающей способностью и выходом готового продукта. Чем выше исходное значение рН сырья, тем лучше качество (соч­ность) готового продукта. Величина изменений рН зависит от температуры и способа нагрева, исходного значения рН сырого мяса.

На величину смещения рН влияет также анатомическое про­исхождение мышц.

С повышением температуры нагрева изменяется водоудерживающая способность и сдвигается изоточка фибриллярных белков к более высоким значениям рН, увеличивается число основ­ных групп. При тепловой денатурации происходит также сдвиг изоточки к более высоким значениям рН, видимо, вследствие расщепления водородных связей и освобождения положительных дополнительных зарядов.

2.4 Изменение растворимости мышечных белков и дезагрегация белков соединительных тканей в процессе нагрева мяса

Растворимость белков — один из показателей, характеризую­щих их денатурационные изменения. Известно, что нагрев со­провождается уменьшением растворимости белков. Разорвав­шиеся при денатурации внутримолекулярные связи взаимодей­ствуют межмолекулярно, в результате чего происходит агрегиро­вание частиц. Иными словами, денатурационные изменения макромолекул белка, изменяя поверхностный слой молекулы, ведут к нарушению соотношения гидрофильных и гидрофобных группировок в сторону повышения последних, что и приводит к уменьшению растворимости.

При традиционных методах нагрева выпадение саркоплазматических белков наблюдается при температуре около 40°С. при­чем наиболее сильно — при рН 5,5. Основная масса этих белков коагулирует в интервале 55 .65°С.

Имеются сведения о наличии термостойких белков: напри­мер, аденилкиназа выдерживает температуру около 100 °С.

Изменение коллагена под воздействием тепла — сложный процесс, складывающийся из двух этапов: сваривания и гидро­лиза коллагена. Коллаген является гликопротеидом, в котором содержание углеводов, связанных ковалентно, варьирует в зави­симости от источника получения белка.

Растворимая часть коллагена — проколлаген, и нераствори­мая — колластромин различаются температурами денатурации и характером денатурационных превращений. Денатурация проколлагена протекает в двух стадиях и заканчивается при темпера­туре 36,5°С, образуя при этом гомогенную прозрачную массу, переходящую в раствор. Колластромин переходит в гомогенное состояние при более высокой температуре или при более длительном тепловом воздействии.

В интервале температур 62 .64°С при нагреве в воде происхо­дит мгновенное сморщивание коллагеновых волокон, которые, складываясь втрое по отношению к своей первоначальной длине, превращаются в резиноподобную массу. В процессе сморщи­вания трехспиральная структура пептидных цепей отдельных молекул коллагена приобретает форму клубка. Однако неструк­турированные пептидные цепи еще связаны ковалентными свя­зями и не могут перейти в раствор.

В результате влажного нагрева коллагенсодержащих тканей образуются полидисперсные продукты распада. При медленном нагреве преобладают высокомолекулярные соединения, при ин­тенсивном — соединения с меньшей молекулярной массой. При сваривании коллагена в раствор переходит около 60% содержащихся в ткани мукоидов.

На дезагрегацию коллагена в процессе нагрева влияют и не­которые другие факторы. Смешение рН мяса от изоэлектрической точки усиливает дезагрегацию, увеличение возраста живот­ных от одного до полутора лет снижает ее примерно в 2 раза.

Таким образом, степень дезагрегации коллагена и образова­ние продуктов распада зависят не только от температуры, до ко­торой нагревается продукт, состояния и состава мяса, но и от скорости, а, следовательно, и способа нагрева.

2.5 Коагуляция белков и ее влияние на качественные изменения, и структуру мясопродуктов

Процесс нагрева белков сопровождается развертыванием глобул и высвобождением свободных радикалов, в связи с чем возникает возможность образования межмолекулярных связей, агрегации частиц и их осаждения, что ведет к уменьшению рас­творимости белков.

Внутренняя перестройка белковой молекулы — собственно денатурация— проявляется в агрегировании полипептидных це­пей. Процесс агрегирования протекает в две стадии: укрупнение размеров частиц без выхода из раствора и последующая коагу­ляция. Агрегация денатурированных белковых молекул, или из­менение их четвертичной структуры, являющаяся следствием предшествующей перестройки вторичной и третичной структур, сопровождается сокращением лиофильных центров белковой молекулы и снижением водоудерживающей способности мяса. Агрегация и коагуляция белков определяют образование непре­рывного пространственного каркаса готового продукта.

Перестройка белковой молекулы при денатурации ухудшает гидрофильные и усиливает гидрофобные свойства ткани. Внутри­молекулярные связи заменяются межмолекулярными, образует­ся нерастворимый сгусток, т. е. происходит коагуляция белков (из разбавленных растворов выпадают хлопья, из концентриро­ванных — коагель). В результате денатурации и коагуляции мышечных белков прочностные свойства мяса возрастают, а сваривание коллагена и последующий его гидролиз, напротив, их ослабляют.

3 Влияние способов и режимов тепловой обработки рыбы и нерыбных продуктов моря на изменениеих физико-химических показателей и биологической ценности

При тепловой кулинарной обработке в мясе рыб протекают сложные физико-химические процессы: денатурация белков, образование новых вкусовых и ароматических веществ, разрушение некоторой части витаминов, превращения пигмен­тов, выплавления жира и выход части его в окружающую среду.

Тепловая денатурация мышечных белков сопровождается уплотнением мышечных волокон, отделением некоторой части воды вместе с растворенными в ней экстрактивными и мине­ральными веществами. Тепловая денатурация коллагена и по­следующая за ней дезагрегация этого белка приводят к разрыхлению структуры мяса рыб. В отличие от мяса теплокровных живо­тных коллаген мяса рыб менее устойчив к гидротермическому воздействию, денатурация его происходит при 40 °С. В соответст­вии с этим и переход коллагена в глютин происходит более быс­трыми темпами и в более низком температурном интервале.

Формирование своеобразного вкуса и аромата рыбы, подвер­гнутой тепловой кулинарной обработке, связано со своеобраз­ным составом экстрактивных, минеральных веществ и липидов. Специфический вкус приготовленной рыбы обусловлен срав­нительно высоким содержанием азотистых экстрактивных ве­ществ (9 .18 % общего азота мышц) и своеобразием их состава. В мясе морских рыб, как правило, содержится больше экстрак­тивных веществ, чем в мясе пресноводных рыб. Среди свобод­ных аминокислот в мясе рыб мало глутаминовой кислоты, обла­дающей вкусом, свойственным говяжьему мясу, и очень много циклических аминокислот — гистидина, фенилаланина, трипто­фана. Гистидин в значительных количествах содержится в тем­ном мясе морских рыб: в скумбрии до 280 мг/100 г, в тунцах до 400, в сайре до 500 мг/100 г. В процессе посмертного автолиза рыбы в результате ферментативного декарбоксилирования гис­тидин превращается в гистамин, обладающий высокой биологи­ческой активностью и токсичностью. В малых концентрациях (до 100 мг/кг) гистамин оказывает сосудорасширяющее действие на организм человека, одновременно стимулирует деятельность желудочно-кишечного тракта. В более высоких концентрациях гистамин может вызывать тяжелые пищевые отравления. В свя­зи с этим океанических рыб, содержащих повышенное количест­во темного мяса (сайру, сардину, скумбрию и др.), после вылова сразу направляют на промышленную переработку (консервы, копчение).


Страница: