Изучение оценки биологической безопасности продукции птицеводства на лабораторных животных
Рефераты >> Ботаника и сельское хоз-во >> Изучение оценки биологической безопасности продукции птицеводства на лабораторных животных

Кроме того, поступление тяжелых металлов из почвы в растения возрастает параллельно с увеличением кислотности почвы. Это происходит потому, что соединения лучше растворяются в кислой среде (P. Planguart et al., 2000).

При техногенном загрязнении почвы тяжелыми металлами одновременно в ней возрастает доля их подвижных форм (В. А. Вострокнутов и др., 2007).

Большая часть свинецсодержащих соединений проходит в организме транзитом, т. е. не всасывается, и меньшая часть быстро включается в обменные процессы. Так, приблизительно только 10 % свинца, поступающего в организм, всасывается (D. Rondia, 2001).

Абсорбция свинца при поступлении нерастворимых солей – сульфатов, сульфидов, хроматов очень низка. Несколько большее количество свинца всасывается при введении в желудочно-кишечный тракт хорошо растворимых соединений ацетата и нитрата. Желудочно-кишечная абсорбция свинца повышается при недостаточном содержании в пище кальция и железа, избытке витамина Д. Токсичность свинца зависит и от других факторов (Р. Е. Андрушайте, 2001).

При парентеральной инъекции растворимых солей абсорбция свинца происходит не полностью, а часть его задерживается в местах введения. При внутривенном введении солей свинца большая его часть связывается с эритроцитами, около 5 % остается в плазме в форме коллоидальных частиц фосфатов или комплексов с белками и органическими кислотами (K.A. Winship, 2001). Витамин Е защищает эритроциты от действия свинца (В.А. Тутельян и др., 2007).

Поступивший в кровь свинец быстро распределяется по органам, затем происходит перераспределение. Образуется два обменных пула свинца: быстрый – кровь, мягкие ткани и медленный – скелет (Р.Е. Андрушайте, В.К. Бауман, 2002).

Свинецсодержащие соединения, оказавшиеся в крови, разносятся и накапливаются в жировой ткани почек, печени, селезенке, костях.

При большей концентрации свинец поступает в клетки кожи, мышцы и кости, из последних он вытесняет кальций (V.N. Nayah et al., 2005).

При высокой концентрации свинца в крови отмечается достоверная корреляция между уровнем свинца в крови и моче (К. Higashikawa et al., 2000).

Свинец, независимо от путей поступления в организм содержится, в основном, в эритроцитах. Есть данные о перераспределении свинца и постепенном его накоплении в сыворотке крови, где он образует комплексы с разными фракциями белка. По-видимому, наиболее прочным является комплекс с g-глобулином. Уже через несколько часов после введения, свинец попадает в органы, по интенсивности поглощения в порядке убывания образующих следующий ряд: почки – печень – легкие – селезенка – мышцы (M.R. Moore, 2008).

Доказано, что всасывание тяжелых металлов из тонкого отдела кишечника зависит от их растворимости в воде (C.A. Kan, 2004).

Свинецсодержащие соединения откладываются в клетках почечных канальцев, образуя внутриядерные включения, окруженные ограничивающей мембраной. Предполагается, что таким образом осуществляется защита цитоплазменных органелл (Y. Bremmer, 2003).

В организме имеются три основных депо свинца: почки, печень и костная ткань. В других же органах свинец удерживается в значительно меньших количествах (Р.Е. Андрушайте, Б.Э. Гайлите, 2007).

Внутри клеток свинец распределяется неравномерно. Отмечается концентрирование свинца в клеточной мембране, митохондриях (E. Ritz, R. Nowach, 2004).

Таким образом, основными путями поступления свинца в организм является дыхательная система и желудочно-кишечный тракт. В кровь всасывается 30-50 % свинца, поступившего в дыхательные пути и 10-45 %, поступившего в пищеварительный тракт. Причем, 50-60 % свинца, поступившего в кровь, выводится через кишечник, остальное накапливается, главным образом, в костях (Hu Howard, P.L. Milder et al., 2002).

При повышенном содержании тяжелых металлов в организме происходит нарушение многих процессов, начиная с клеточных мембран, т. к. ионы металлов могут связываться со специфическими участками фосфолипидных полярных частей (В.А. Тутельян и др., 2007). В результате этого взаимодействия происходит расширение или сжатие поверхности мембраны и, следовательно, изменение ее обычных свойств. Особенно опасны металлоорганические соединения, т. к. они гораздо лучше проходят барьеры внутри организма (В. Калоус, З. Павличек, 2005).

Основные пути поступления кадмия в организм – желудочно-кишечный тракт и легкие.

Желудочно-кишечная абсорбция кадмия низка: для животных она составляет 3-8 %. На нее влияют уровень потребления цинка и растворимость солей кадмия.

Эксперименты на животных указывают, что кадмий абсорбируется посредством пассивной диффузии в двенадцатиперстной, тонкой и подвздошной кишках (P.J. Landrigan, 2003).

Абсорбция ионов кадмия из центров парентеральной инъекции в кровь происходит быстро и полно. В крови ионы кадмия входят в эритроциты и распределяются в плазме. Кадмий присоединяется к плазменным белкам, особенно g-глобулинам, и легко попадает в ткани.

При внутривенных инъекциях солей кадмия наблюдаются быстрое распределение его в тканях и медленное выделение. Так, распределение кадмия в печени, почках, селезенке и других органах через 28 дней мало отличается от распределения его через 1 час (A.K. Gautam, A.R. Chrowdhury, 2007).

Абсорбция кадмия через кожу незначительна. После вдыхания кадмиевой пыли или аэрозоля кадмий быстро и полностью абсорбируется легкими. Только малорастворимые соли, такие как CdS, остаются в легких не абсорбированными и вызывают местные воспаления и язвы. Вдыхаемые соли кадмия в зависимости от растворимости абсорбируются на 10-40 % (B.A. Fowler, R.E. Gandley, 2003).

Способ транспортировки кадмийсодержащих соединений кровью не ясен. Экспериментальные данные на животных дают основание предполагать, что соединения кадмия переносятся плазмой, взаимодействуя с протеинами с низким молекулярным весом и эритроцитами, в первую очередь гемоглобином и другими протеинами. Эксперименты показывают, что после одной инъекции уровень кадмия повышается, а затем быстро снижается, при этом введенная фракция вначале присутствует в плазме, в комплексе с протеинами, в последующем обнаруживается в эритроцитах. Кадмийсодержащие вещества, находящиеся в красных клетках крови, не поступают в плазму крови и не заменяются соединениями кадмия из плазмы, но почки обладают уникальной способностью выделять этот связанный кадмий из крови (A. Bernard, R. Lauwerus, 2004).

Задержка кадмия наблюдается во всех тканях у животных, в наибольшем количестве – в почках, печени, органах размножения и легких. Причем в почках и печени концентрируется до 50 % всего количества кадмия в организме. Другие органы, такие, как легкие, мозг, селезенка, сердце, жир также аккумулируют значительные количества кадмия. Кадмий не обнаружен в поджелудочной железе, аорте, пищеводе (H.-W. Schlipkoter et al.,2006).

Накопление кадмия в почках и печени происходит в форме металлотионеина с молекулярной массой в 10000 дальтон. Синтез кадмийсодержащего белка металлотионеина является, по существу, механизмом защиты и приводит к избирательному накоплению кадмия в почках и печени, где, процент связывания с металлотионеинами кадмия составляет 76-87 %.


Страница: