Квантово-химические правила отбора элементарных стадий
Рефераты >> Химия >> Квантово-химические правила отбора элементарных стадий

Любая термодинамически разрешенная реакция, в которой происходит незначительное перемещение ядер (близость минимумов энергетических термов) и мало изменяются электронные состояния (принцип наименьшего движения), и молекулярность которой не превышает 2, имеет шанс быть согласованным процессом, элементарной стадией. Однако, для того, чтобы величина была небольшой и реакция протекала с измеряемой скоростью, необходимо выполнение двух требований, вытекающих из квантово-химической теории. Эффективное взаимодействие двух частиц с достаточно низкой величиной барьера может происходить в случае, когда симметрия перекрывающихся молекулярных орбиталей (МО) будет одинаковой, а энергии этих МО будут близки. Например, бимолекулярная реакция (27)

H2 + I2 = 2HI (27)

с небольшим изменением координат ядер и валентных оболочек не является элементарным процессом (ЭС), поскольку запрещена по симметрии граничных МО. Рассмотрим подробнее некоторые квантово-химические подходы к проблеме реакционной способности.

Теория возмущений в приближении граничных МО

Из правила БЭП следует, что знание энергетического состояния исходных и конечных продуктов позволяет оценивать кинетические характеристики ЭС (вероятность реализации элементарного акта). Метод возмущения МО (МВМО), оперируя только граничными занятыми и свободными МО (ВЗМО, НСМО) и зарядами (на атомах в молекулах и на атомных орбиталях в МО) в исходных реагентах, позволяет в ряде случаев предсказать вероятность, направление и эффективность взаимодействия двух реагентов.

Чем эффективнее взаимодействие, тем ниже Еакт и тем выше вероятность согласованного (элементарного) акта.

Если энергии граничных орбиталей c1 и c2 близки, то энергия взаимодействия определяется резонансным (обменным) интегралом b12

(28)

где H – гамильтониан системы, t – элемент объема, в котором происходит перекрывание орбиталей. Величина b12 в этом случае определяет и величину расщепления новых МО Y1 и Y2 или энергию стабилизации e = b12.

Если энергии c1 и c2 различаются сильно, то величина e определяется не только b12, а зависит и от разности энергий c1 и c2 по уравнению (29):

(29)

где Е1 и Е2 – энергии низшей и высшей МО

Чем больше величина e , тем стабильнее образующийся аддукт, тем ниже Еакт его образования.

МВМО не дает оценки Е переходного состояния и Еакт. Рассчитывается лишь разница между полной электронной энергией реагирующей системы Е и энергиями исходных реагентов и (малое возмущение):

DЕ = Е – , (30)

справедливое только для начальных участков координаты реакции. Только на больших расстояниях между реагентами не происходит смешения МО, нет межмолекулярного отталкивания и можно говорить о чистых МО исходных реагентов. Вместе с тем, такое приближение позволяет оценить наиболее вероятный путь реакции.

Энергию возмущения DЕ при взаимодействии реагентов S и Т (S и Т – молекулы или активные центры в молекулах) рассчитывают по уравнению (31):

(31)

В случае только двух граничных МО (например, молекул донора и акцептора) уравнение упрощается (32):

(32)

В уравнениях (31, 32) qS и qT – эффективные заряды на центрах S и Т, RST – расстояние между центрами в ходе взаимодействия, e – диэлектрическая проницаемость среды. Таким образом, первый член (возмущение 1го порядка) отражает энергию кулоновского взаимодействия. Второй член (возмущение 2го порядка) определяет энергию орбитального перекрывания и включает: gST – коэффициент, учитывающий заселенность электронами орбиталей c1 и c2, и – квадраты коэффициентов при атомных орбиталях центров S и Т волновой функции граничных МО c1 и c2, – квадрат обменного интеграла, Е1 и Е2 – энергии орбиталей c1 и c2. Разные случаи заселенности орбиталей c1 и c2 реагирующих частиц и коэффициент gST приведены ниже:

Число электронов на граничных орбиталях

gST

2 + 2, 0 + 0

0 (нет перекрывания)

2 + 1, 1 + 0

1

2 + 0, 1 + 1

2 (самое сильное перекрывание)

Если Е1 – Е2 в знаменателе уравнения (32) мало, заселенность gST равна 1 и 2, симметрия орбиталей одинакова (b12 > 0), геометрия орбиталей удобна для перекрывания (коэффициенты CS и CT имеют большие значения в одинаковых областях пространства) и второй член существенно больше первого, можно говорить об орбитально-контролируемой реакции.

Если Е1 – Е2 величина большая, второй член становится небольшим даже при больших CS и CT. Если при этом qS и qT также велики, говорят о зарядово-контролируемой реакции. Эти простые оценки полуэмпирическими методами МО ЛКАО позволяют определить (без расчетов ППЭ), в каком направлении (по каким центрам) пойдет та или другая реакция и можно ли ожидать высокой скорости от выбранной элементарной стадии. Естественно, что все соображения об оценке энергии DЕ относятся только к элементарным стадиям.

Предположим, что донорная молекула, типичный нуклеофил SCN– реагирует с акцептором, имеющим НСМО. Если энергии ВЗМО донора (c1) и НСМО акцептора (c2) близки, реакция будет орбитально-контролируемой. Такая реакция будет протекать между молекулой акцептора и тем центром нуклеофила (донора), который обладает наивысшей плотностью заряда () на граничных орбиталях донора. Высшая занятая МО нуклеофила SCN– Y2 имеет вид:

Y2 = 0.74jS + 0.33jC – 0.59jN

= 0.55 = 0.35 >


Страница: