Магнийорганические соединения
Рефераты >> Химия >> Магнийорганические соединения

Содержание

Введение

История открытия

Строение

Получение

Реакции

Применение

Заключение

Список литературы

Введение

Магнийорганические соединения относятся к числу одних из самых известных металлоорганических соединений. Они широко применяются в органическом синтезе, хотя в последнее время их потеснили литийорганические соединения, которые в ряде случаев оказываются более удобными. Использование магнийорганических соединений позволило получить органические производные многих элементов и привело к развитию целого направления - химии элементоорганических соединений, успешно развиваемое в нашей стране школой академика А.Н. Несмеянова. С их помощью можно получать соединения различных классов: спирты, альдегиды, кетоны, эфиры, органические кислоты и т. д. Место, занимаемое магнийорганическими соединениями среди всех металлоорганических соединений, уникально. Причина заключается в том, что магнийорганические соединения легко доступны и обладают высокой реакционной способностью, однако не столь чувствительны к кислороду и влаге как литийорганические соединения. Они взаимодействуют со многими органическими соединениями достаточно селективно (также в отличие от литийорганических соединений, которые часто реагируют неселективно и проявляют свойства восстановителей) и поэтому находят широкое применение в органическом и металлоорганическом синтезе. Реакции, в которые вступают реактивы Гриньяра, чрезвычайно разнообразны. К ним относятся переметаллирование с получением самых различных металлоорганических соединений, алкилирование и каталитическое арилирование, приводящие к образованию новых связей углерод-углерод. Важнейшей группой реакций Mg-органических соединений являются реакции присоединения по кратным связям С=О, С=NR, C≡N, приводящие к получению спиртов, кетонов, кислот, аминов.

История открытия

К магнийорганическим относят химические соединения, в которых атом углерода непосредственно связан с атомом магния. Они представляют отдельный очень важный класс соединений магния. С их помощью химики синтезировали огромное количество органических соединений: лекарственных препаратов, витаминов, душистых веществ и т.д. История металлоорганических соединений началась в 1849г, когда молодой английский химик Франкланд получил вещество, в котором атом углерода был непосредственно связан с цинком. Своей способностью вступать во все возможные реакции они сразу же привлекли внимание химиков. Однако их чрезвычайная активность, например, они мгновенно самовоспламенялись на воздухе, сильно затрудняла работу с этими веществами. В 1899г французский ученый Ф. Барбье предложил заменить цинк на магний, обнаружив, что в присутствии диэтилового, "серного" эфира магний легко вступает в те же реакции, что и цинк. Магнийорганические соединения оказались значительно эффективнее цинкорганических, менее опасными в обращении и получили широкое распространение. Особая заслуга в их исследовании и внедрении в лабораторную практику принадлежит выдающемуся французскому химику В. Гриньяру. В 1900 г. он усовершенствовал метод синтеза, предложив разделить реакцию на две стадии: 1 - образование смешанного магнийорганического соединения в эфирной среде:

RX + Mg → RMgX,

где R - углеводородный радикал, а Х - галоген; 2 - взаимодействие RMgX с соединением, содержащим карбонильную группу, приводит к образованию новой углерод - углеродной связи. Реакции такого типа получили название по имени автора открытия - "реакции Гриньяра", подробно рассмотренные ниже.

За эти работы В. Гриньяр был удостоен в 1912 г. Нобелевской премии. Магнийорганические галогениды нашли широкое применение в органическом синтезе. С их помощью можно получать соединения различных классов спирты, альдегиды, кетоны, эфиры, органические кислоты и т.д. Сам В. Гриньяр писал 1926г так: "Подобно хорошо настроенной скрипке, магнийорганические соединения под опытными пальцами могут дать звучание все новым неожиданным и более гармоничным аккордам".

Строение

Включение атома непереходного металла в органическую молекулу с образованием s-связи С-Мет придает молекуле высокую реакционную способность в качестве нуклеофила или, как говорят, скрытого карбаниона, поскольку в большинстве таких молекул связь М-С сильно поляризована и атом углерода несет частичный отрицательный заряд. Эта специфика металлоорганических соединений главных групп сделала их мощным орудием металлоорганического и органического синтеза.

Магнийорганические соединения содержат связь Mg–C. Основные типы магнийорганических соединений – R2Mg и RMgX, где Х = Hal, OR, SR, NRR'. Наиболее важны RMgHal (Hal = Cl, Br, I), называемые реактивами Гриньяра – бесцветные кристаллы или вязкие жидкости состава Mg:R:Hal = 1:1:1; устойчивы до 100-150°С.

В растворе RMgHal существует равновесие Шленка, смещенное влево:

2RMgHal → MgHal2 + R2Mg

Стехиометрическая смесь MgHal2 и R2Mg в эфире дает продукт, полностью идентичный RMgHal. Полагают, что в равновесии Шленка участвуют сольватирированные комплексы, например:

R2Mg·2ТГФ + MgHal2·4ТГФ ↔ 2(RMgHal·nТГФ) + mТГФ

(n = 2,3; m = 0-2)

В гексаметаполе (L) главная форма – RMgHal·2L с частично ионной связью Mg–С. В углеводородах RMgHal образуют структуры с мостиковыми атомами галогена, RMgF в эфире и ТГФ – димер с мостиковыми атомами F.

Соединения R2Mg – бесцветные твердые вещества, обычно разлагающиеся при нагревании без плавления, для некоторых R2Mg известны температуры плавления. Плохо растворимы в насыщенных углеводородах, лучше – в бензоле. Обычно кристаллизуются из полярных сред в виде комплексов с растворителем составов 1:1 или 1:2, однако в отличие от RMgHal растворитель может быть легко удален в вакууме. В кристаллическом состоянии R2Mg (R = СН3, С2Н5) имеют структуру линейных полимеров с мостиковыми алкильными группами. В среде углеводородов R2Mg представляют собой димеры или тримеры в эфире или ТГФ – сольватированные мономеры, однако при высоких концентрациях R2Mg возможна их ассоциация. Связь Mg–С в растворенных R2Mg обычно ковалентная однако в гексаметаполе она существенно ионизирована. Фактически комплексно связанный эфир входит в состав магнийорганического соединения. Кроме того, по эбуллиоскопическим определениям А. П. Терентьева гриньяров реактив имеет удвоенный молекулярный вес. При электролизе его эфирного раствора на катоде отлагается магний. Всё это дало основание Тереньтеву предложить для реактива Гриньяра такую структуру (контактная ионная пара):

Эшби и Уокер (1967 г.) привели доводы в пользу того, что ассоциация гриньяровского реактива осуществляется галоидными мостами:

Однако такая структура не объясняет факта электропроводности и электролиза эфирных растворов гриньяровских реактивов с переносом Mg2+ на катод. Несмотря на сложную структуру реактивов Гриньяра, для описания всех их реакций вполне удовлетворяет формула RMgHal, которую обычно и применяют.


Страница: